\left. \begin{array} { l } { f {(x)} = -4 x - 4 }\\ { g = f {(-\frac{1}{5})} }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { \text{Solve for } p \text{ where} } \\ { p = o } \end{array} \right.
Leystu fyrir f, x, g, h, j, k, l, m, n, o, p
p=i
Deila
Afritað á klemmuspjald
h=i
Íhugaðu fjórðu jöfnuna. Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
i=g
Íhugaðu þriðju jöfnuna. Settu þekkt gildi breyta inn í jöfnu.
g=i
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
i=f\left(-\frac{1}{5}\right)
Íhugaðu aðra jöfnuna. Settu þekkt gildi breyta inn í jöfnu.
-5i=f
Margfaldaðu báðar hliðar með -5, umhverfu -\frac{1}{5}.
f=-5i
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
-5ix=-4x-4
Íhugaðu fyrstu jöfnuna. Settu þekkt gildi breyta inn í jöfnu.
-5ix+4x=-4
Bættu 4x við báðar hliðar.
\left(4-5i\right)x=-4
Sameinaðu -5ix og 4x til að fá \left(4-5i\right)x.
x=\frac{-4}{4-5i}
Deildu báðum hliðum með 4-5i.
x=\frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}
Margfaldaðu bæði teljara og nefnara \frac{-4}{4-5i} með samoki nefnarans, 4+5i.
x=\frac{-16-20i}{41}
Margfaldaðu í \frac{-4\left(4+5i\right)}{\left(4-5i\right)\left(4+5i\right)}.
x=-\frac{16}{41}-\frac{20}{41}i
Deildu -16-20i með 41 til að fá -\frac{16}{41}-\frac{20}{41}i.
f=-5i x=-\frac{16}{41}-\frac{20}{41}i g=i h=i j=i k=i l=i m=i n=i o=i p=i
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}