Beint í aðalefni
Leystu fyrir x, y
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

5x-4y=19,3x+2y=7
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
5x-4y=19
Veldu eina jöfnuna og leystu x með því að einangra x vinstra megin við samasemmerkið.
5x=4y+19
Leggðu 4y saman við báðar hliðar jöfnunar.
x=\frac{1}{5}\left(4y+19\right)
Deildu báðum hliðum með 5.
x=\frac{4}{5}y+\frac{19}{5}
Margfaldaðu \frac{1}{5} sinnum 4y+19.
3\left(\frac{4}{5}y+\frac{19}{5}\right)+2y=7
Settu \frac{4y+19}{5} inn fyrir x í hinni jöfnunni, 3x+2y=7.
\frac{12}{5}y+\frac{57}{5}+2y=7
Margfaldaðu 3 sinnum \frac{4y+19}{5}.
\frac{22}{5}y+\frac{57}{5}=7
Leggðu \frac{12y}{5} saman við 2y.
\frac{22}{5}y=-\frac{22}{5}
Dragðu \frac{57}{5} frá báðum hliðum jöfnunar.
y=-1
Deildu í báðar hliðar jöfnunar með \frac{22}{5}. Þetta skilar sömu niðurstöðu og að margfalda báðar hliðar með margföldunarandhverfu brotsins.
x=\frac{4}{5}\left(-1\right)+\frac{19}{5}
Skiptu -1 út fyrir y í x=\frac{4}{5}y+\frac{19}{5}. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=\frac{-4+19}{5}
Margfaldaðu \frac{4}{5} sinnum -1.
x=3
Leggðu \frac{19}{5} saman við -\frac{4}{5} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
x=3,y=-1
Leyst var úr kerfinu.
5x-4y=19,3x+2y=7
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\7\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}5&-4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}5&-4\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&2\end{matrix}\right))\left(\begin{matrix}19\\7\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-4\times 3\right)}&-\frac{-4}{5\times 2-\left(-4\times 3\right)}\\-\frac{3}{5\times 2-\left(-4\times 3\right)}&\frac{5}{5\times 2-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{3}{22}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}19\\7\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 19+\frac{2}{11}\times 7\\-\frac{3}{22}\times 19+\frac{5}{22}\times 7\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Reiknaðu.
x=3,y=-1
Dragðu út stuðul fylkjanna x og y.
5x-4y=19,3x+2y=7
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
3\times 5x+3\left(-4\right)y=3\times 19,5\times 3x+5\times 2y=5\times 7
Til að gera 5x og 3x jafnt skal margfalda alla liði á hverri hlið fyrstu jöfnunnar með 3 og alla liði á hverri hlið annarrar jöfnunnar með 5.
15x-12y=57,15x+10y=35
Einfaldaðu.
15x-15x-12y-10y=57-35
Dragðu 15x+10y=35 frá 15x-12y=57 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
-12y-10y=57-35
Leggðu 15x saman við -15x. Liðirnir 15x og -15x núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
-22y=57-35
Leggðu -12y saman við -10y.
-22y=22
Leggðu 57 saman við -35.
y=-1
Deildu báðum hliðum með -22.
3x+2\left(-1\right)=7
Skiptu -1 út fyrir y í 3x+2y=7. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
3x-2=7
Margfaldaðu 2 sinnum -1.
3x=9
Leggðu 2 saman við báðar hliðar jöfnunar.
x=3
Deildu báðum hliðum með 3.
x=3,y=-1
Leyst var úr kerfinu.