\left\{ \begin{array} { l } { \cos x = \sin y } \\ { \sin ^ { 2 } y - \cos x = 2 } \end{array} \right.
Leystu fyrir x, y (complex solution)
x=2\pi n_{1}-i\ln(2-\sqrt{3})\text{, }n_{1}\in \mathrm{Z}\text{, }y=2\pi n_{2}-i\ln(-\sqrt{3}i+2i)\text{, }n_{2}\in \mathrm{Z}
x=2\pi n_{1}-i\ln(2-\sqrt{3})\text{, }n_{1}\in \mathrm{Z}\text{, }y=2\pi n_{3}-i\ln(\sqrt{3}i+2i)\text{, }n_{3}\in \mathrm{Z}
x=2\pi n_{4}-i\ln(\sqrt{3}+2)\text{, }n_{4}\in \mathrm{Z}\text{, }y=2\pi n_{2}-i\ln(-\sqrt{3}i+2i)\text{, }n_{2}\in \mathrm{Z}
x=2\pi n_{4}-i\ln(\sqrt{3}+2)\text{, }n_{4}\in \mathrm{Z}\text{, }y=2\pi n_{3}-i\ln(\sqrt{3}i+2i)\text{, }n_{3}\in \mathrm{Z}
x=2\pi n_{5}+\pi \text{, }n_{5}\in \mathrm{Z}\text{, }y=2\pi n_{6}+\frac{3\pi }{2}\text{, }n_{6}\in \mathrm{Z}
Leystu fyrir x, y
x=2\pi n_{1}+\pi
n_{1}\in \mathrm{Z}
y=2\pi n_{2}+\frac{3\pi }{2}
n_{2}\in \mathrm{Z}
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}