\left\{ \begin{array} { c } { x + 2 y = 1 } \\ { - 3 x + y = - 10 } \end{array} \right.
Leystu fyrir x, y
x=3
y=-1
Graf
Spurningakeppni
Simultaneous Equation
5 vandamál svipuð og:
\left\{ \begin{array} { c } { x + 2 y = 1 } \\ { - 3 x + y = - 10 } \end{array} \right.
Deila
Afritað á klemmuspjald
x+2y=1,-3x+y=-10
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
x+2y=1
Veldu eina jöfnuna og leystu x með því að einangra x vinstra megin við samasemmerkið.
x=-2y+1
Dragðu 2y frá báðum hliðum jöfnunar.
-3\left(-2y+1\right)+y=-10
Settu -2y+1 inn fyrir x í hinni jöfnunni, -3x+y=-10.
6y-3+y=-10
Margfaldaðu -3 sinnum -2y+1.
7y-3=-10
Leggðu 6y saman við y.
7y=-7
Leggðu 3 saman við báðar hliðar jöfnunar.
y=-1
Deildu báðum hliðum með 7.
x=-2\left(-1\right)+1
Skiptu -1 út fyrir y í x=-2y+1. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=2+1
Margfaldaðu -2 sinnum -1.
x=3
Leggðu 1 saman við 2.
x=3,y=-1
Leyst var úr kerfinu.
x+2y=1,-3x+y=-10
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}1&2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1&2\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}1&2\\-3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-3&1\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-3\right)}&-\frac{2}{1-2\left(-3\right)}\\-\frac{-3}{1-2\left(-3\right)}&\frac{1}{1-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{2}{7}\\\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}-\frac{2}{7}\left(-10\right)\\\frac{3}{7}+\frac{1}{7}\left(-10\right)\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Reiknaðu.
x=3,y=-1
Dragðu út stuðul fylkjanna x og y.
x+2y=1,-3x+y=-10
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
-3x-3\times 2y=-3,-3x+y=-10
Til að gera x og -3x jafnt skal margfalda alla liði á hverri hlið fyrstu jöfnunnar með -3 og alla liði á hverri hlið annarrar jöfnunnar með 1.
-3x-6y=-3,-3x+y=-10
Einfaldaðu.
-3x+3x-6y-y=-3+10
Dragðu -3x+y=-10 frá -3x-6y=-3 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
-6y-y=-3+10
Leggðu -3x saman við 3x. Liðirnir -3x og 3x núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
-7y=-3+10
Leggðu -6y saman við -y.
-7y=7
Leggðu -3 saman við 10.
y=-1
Deildu báðum hliðum með -7.
-3x-1=-10
Skiptu -1 út fyrir y í -3x+y=-10. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
-3x=-9
Leggðu 1 saman við báðar hliðar jöfnunar.
x=3
Deildu báðum hliðum með -3.
x=3,y=-1
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}