Beint í aðalefni
Meta
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int 270\sqrt{x}\mathrm{d}x
Reiknaðu fyrst út óákveðið heildi.
270\int \sqrt{x}\mathrm{d}x
Þáttaðu fastann með \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
180x^{\frac{3}{2}}
Endurskrifa \sqrt{x} sem x^{\frac{1}{2}}. Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{\frac{1}{2}}\mathrm{d}x út fyrir \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Einfaldaðu. Margfaldaðu 270 sinnum \frac{2x^{\frac{3}{2}}}{3}.
180\times 4^{\frac{3}{2}}-180\times 1^{\frac{3}{2}}
Ákveðið heildi er stofnfall segðarinnar reiknað út við efra markgildi heildunarinnar dregið frá útreiknuðu stofnfalli við neðra markgildi heildunarinnar.
1260
Einfaldaðu.