Meta
3840
Deila
Afritað á klemmuspjald
\int _{-1}^{3}60|20-4|\mathrm{d}x
Margfaldaðu 3 og 20 til að fá út 60.
\int _{-1}^{3}60|16|\mathrm{d}x
Dragðu 4 frá 20 til að fá út 16.
\int _{-1}^{3}60\times 16\mathrm{d}x
Algildi rauntölu a er a ef a\geq 0, eða -a ef a<0. Algildi 16 er 16.
\int _{-1}^{3}960\mathrm{d}x
Margfaldaðu 60 og 16 til að fá út 960.
\int 960\mathrm{d}x
Reiknaðu fyrst út óákveðið heildi.
960x
Finndu heildi fyrir 960 með því að nota töflu yfir almenna heildareglu \int a\mathrm{d}x=ax.
960\times 3-960\left(-1\right)
Ákveðið heildi er stofnfall segðarinnar reiknað út við efra markgildi heildunarinnar dregið frá útreiknuðu stofnfalli við neðra markgildi heildunarinnar.
3840
Einfaldaðu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}