Leystu fyrir y
\left\{\begin{matrix}y=-\frac{\sqrt{9x^{4}+Сx}}{4x}-\frac{x}{4}\text{; }y=\frac{\sqrt{9x^{4}+Сx}}{4x}-\frac{x}{4}\text{, }&\left(С\neq 0\text{ and }x=\sqrt[3]{С_{1}}\right)\text{ or }\left(x\leq \sqrt[3]{С_{2}}\text{ and }x<0\right)\text{ or }\left(x\geq \sqrt[3]{С_{3}}\text{ and }x>0\right)\\y\in \mathrm{R}\text{, }&С=0\text{ and }x=0\end{matrix}\right.
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}