Beint í aðalefni
Meta
Tick mark Image
Diffra með hliðsjón af x
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int x^{2}\left(x^{3}+3x^{2}+3x+1\right)\mathrm{d}x
Notaðu tvíliðusetninguna \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} til að stækka \left(x+1\right)^{3}.
\int x^{5}+3x^{4}+3x^{3}+x^{2}\mathrm{d}x
Notaðu dreifieiginleika til að margfalda x^{2} með x^{3}+3x^{2}+3x+1.
\int x^{5}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Samþættu samtölu hugtak eftir hugtak.
\int x^{5}\mathrm{d}x+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Þáttaðu fasta hvers hugtaks.
\frac{x^{6}}{6}+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{5}\mathrm{d}x út fyrir \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{4}\mathrm{d}x út fyrir \frac{x^{5}}{5}. Margfaldaðu 3 sinnum \frac{x^{5}}{5}.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\int x^{2}\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{3}\mathrm{d}x út fyrir \frac{x^{4}}{4}. Margfaldaðu 3 sinnum \frac{x^{4}}{4}.
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\frac{x^{3}}{3}
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{2}\mathrm{d}x út fyrir \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}
Einfaldaðu.
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}+С
Ef F\left(x\right) er stofnfall f\left(x\right), þá er sett allra stofnfalla f\left(x\right) gefið af F\left(x\right)+C. Þar af leiðandi bætir þú fastanum fyrir samþættingu C\in \mathrm{R} við niðurstöðuna.