Beint í aðalefni
Meta
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int 14x^{2}+x\mathrm{d}x
Reiknaðu fyrst út óákveðið heildi.
\int 14x^{2}\mathrm{d}x+\int x\mathrm{d}x
Samþættu samtölu hugtak eftir hugtak.
14\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Þáttaðu fasta hvers hugtaks.
\frac{14x^{3}}{3}+\int x\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{2}\mathrm{d}x út fyrir \frac{x^{3}}{3}. Margfaldaðu 14 sinnum \frac{x^{3}}{3}.
\frac{14x^{3}}{3}+\frac{x^{2}}{2}
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x\mathrm{d}x út fyrir \frac{x^{2}}{2}.
\frac{14}{3}\times 3^{3}+\frac{3^{2}}{2}-\left(\frac{14}{3}\times 1^{3}+\frac{1^{2}}{2}\right)
Ákveðið heildi er stofnfall segðarinnar reiknað út við efra markgildi heildunarinnar dregið frá útreiknuðu stofnfalli við neðra markgildi heildunarinnar.
\frac{376}{3}
Einfaldaðu.