Beint í aðalefni
Meta
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int x^{2}+2x\mathrm{d}x
Reiknaðu fyrst út óákveðið heildi.
\int x^{2}\mathrm{d}x+\int 2x\mathrm{d}x
Samþættu samtölu hugtak eftir hugtak.
\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Þáttaðu fasta hvers hugtaks.
\frac{x^{3}}{3}+2\int x\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{2}\mathrm{d}x út fyrir \frac{x^{3}}{3}.
\frac{x^{3}}{3}+x^{2}
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x\mathrm{d}x út fyrir \frac{x^{2}}{2}. Margfaldaðu 2 sinnum \frac{x^{2}}{2}.
\frac{5^{3}}{3}+5^{2}-\left(\frac{\left(-2\right)^{3}}{3}+\left(-2\right)^{2}\right)
Ákveðið heildi er stofnfall segðarinnar reiknað út við efra markgildi heildunarinnar dregið frá útreiknuðu stofnfalli við neðra markgildi heildunarinnar.
\frac{196}{3}
Einfaldaðu.