Beint í aðalefni
Meta
Tick mark Image
Diffra með hliðsjón af x
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int 2x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -\frac{1}{x}\mathrm{d}x
Samþættu samtölu hugtak eftir hugtak.
2\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
Þáttaðu fasta hvers hugtaks.
\frac{2x^{3}}{3}+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{2}\mathrm{d}x út fyrir \frac{x^{3}}{3}. Margfaldaðu 2 sinnum \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\int \frac{1}{x}\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x\mathrm{d}x út fyrir \frac{x^{2}}{2}. Margfaldaðu 3 sinnum \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)
Notaðu \int \frac{1}{x}\mathrm{d}x=\ln(|x|) úr töflu yfir almenn heildi til að fá niðurstöðu.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)+С
Ef F\left(x\right) er stofnfall f\left(x\right), þá er sett allra stofnfalla f\left(x\right) gefið af F\left(x\right)+C. Þar af leiðandi bætir þú fastanum fyrir samþættingu C\in \mathrm{R} við niðurstöðuna.