Beint í aðalefni
Meta
Tick mark Image
Diffra með hliðsjón af x
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int x^{3}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int 14x\mathrm{d}x+\int -5\mathrm{d}x
Samþættu samtölu hugtak eftir hugtak.
\int x^{3}\mathrm{d}x-12\int x^{2}\mathrm{d}x+14\int x\mathrm{d}x+\int -5\mathrm{d}x
Þáttaðu fasta hvers hugtaks.
\frac{x^{4}}{4}-12\int x^{2}\mathrm{d}x+14\int x\mathrm{d}x+\int -5\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{3}\mathrm{d}x út fyrir \frac{x^{4}}{4}.
\frac{x^{4}}{4}-4x^{3}+14\int x\mathrm{d}x+\int -5\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{2}\mathrm{d}x út fyrir \frac{x^{3}}{3}. Margfaldaðu -12 sinnum \frac{x^{3}}{3}.
\frac{x^{4}}{4}-4x^{3}+7x^{2}+\int -5\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x\mathrm{d}x út fyrir \frac{x^{2}}{2}. Margfaldaðu 14 sinnum \frac{x^{2}}{2}.
\frac{x^{4}}{4}-4x^{3}+7x^{2}-5x
Finndu heildi fyrir -5 með því að nota töflu yfir almenna heildareglu \int a\mathrm{d}x=ax.
\frac{x^{4}}{4}-4x^{3}+7x^{2}-5x+С
Ef F\left(x\right) er stofnfall f\left(x\right), þá er sett allra stofnfalla f\left(x\right) gefið af F\left(x\right)+C. Þar af leiðandi bætir þú fastanum fyrir samþættingu C\in \mathrm{R} við niðurstöðuna.