Beint í aðalefni
Meta
Tick mark Image
Diffra með hliðsjón af x
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Notaðu tvíliðusetninguna \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} til að stækka \left(x^{2}+2\right)^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 3 til að fá út 6.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 2 til að fá út 4.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Samþættu samtölu hugtak eftir hugtak.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Þáttaðu fasta hvers hugtaks.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{6}\mathrm{d}x út fyrir \frac{x^{7}}{7}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{4}\mathrm{d}x út fyrir \frac{x^{5}}{5}. Margfaldaðu 6 sinnum \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{2}\mathrm{d}x út fyrir \frac{x^{3}}{3}. Margfaldaðu 12 sinnum \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
Finndu heildi fyrir 8 með því að nota töflu yfir almenna heildareglu \int a\mathrm{d}x=ax.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
Einfaldaðu.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
Ef F\left(x\right) er stofnfall f\left(x\right), þá er sett allra stofnfalla f\left(x\right) gefið af F\left(x\right)+C. Þar af leiðandi bætir þú fastanum fyrir samþættingu C\in \mathrm{R} við niðurstöðuna.