Meta
\frac{x^{\frac{3}{2}}}{3}+С
Diffra með hliðsjón af x
\frac{\sqrt{x}}{2}
Deila
Afritað á klemmuspjald
\int \frac{x}{2\sqrt{x}}\mathrm{d}x
Þættaðu segðir sem hafa ekki þegar verið þættaðar í \frac{x}{2\sqrt{x}}.
\int \frac{\sqrt{x}}{2}\mathrm{d}x
Styttu burt \sqrt{x} í bæði teljara og samnefnara.
\frac{\int \sqrt{x}\mathrm{d}x}{2}
Þáttaðu fastann með \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{\frac{3}{2}}}{3}
Endurskrifa \sqrt{x} sem x^{\frac{1}{2}}. Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{\frac{1}{2}}\mathrm{d}x út fyrir \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Einfaldaðu.
\frac{x^{\frac{3}{2}}}{3}+С
Ef F\left(x\right) er stofnfall f\left(x\right), þá er sett allra stofnfalla f\left(x\right) gefið af F\left(x\right)+C. Þar af leiðandi bætir þú fastanum fyrir samþættingu C\in \mathrm{R} við niðurstöðuna.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}