Meta
\frac{8x+50z}{21}
Víkka
\frac{8x+50z}{21}
Spurningakeppni
Algebra
\frac{ 12x+5z }{ 7 } - \frac{ 4x-5z }{ 3 }
Deila
Afritað á klemmuspjald
\frac{3\left(12x+5z\right)}{21}-\frac{7\left(4x-5z\right)}{21}
Til að leggja saman eða draga saman segðir skaltu stækka þær til að nefnararnir verði eins. Minnsta sameiginlega margfeldi 7 og 3 er 21. Margfaldaðu \frac{12x+5z}{7} sinnum \frac{3}{3}. Margfaldaðu \frac{4x-5z}{3} sinnum \frac{7}{7}.
\frac{3\left(12x+5z\right)-7\left(4x-5z\right)}{21}
Þar sem \frac{3\left(12x+5z\right)}{21} og \frac{7\left(4x-5z\right)}{21} eru með sama nefnara skaltu draga frá með því að nota frádrátt á teljarana.
\frac{36x+15z-28x+35z}{21}
Margfaldaðu í 3\left(12x+5z\right)-7\left(4x-5z\right).
\frac{8x+50z}{21}
Sameinaðu svipaða liði í 36x+15z-28x+35z.
\frac{3\left(12x+5z\right)}{21}-\frac{7\left(4x-5z\right)}{21}
Til að leggja saman eða draga saman segðir skaltu stækka þær til að nefnararnir verði eins. Minnsta sameiginlega margfeldi 7 og 3 er 21. Margfaldaðu \frac{12x+5z}{7} sinnum \frac{3}{3}. Margfaldaðu \frac{4x-5z}{3} sinnum \frac{7}{7}.
\frac{3\left(12x+5z\right)-7\left(4x-5z\right)}{21}
Þar sem \frac{3\left(12x+5z\right)}{21} og \frac{7\left(4x-5z\right)}{21} eru með sama nefnara skaltu draga frá með því að nota frádrátt á teljarana.
\frac{36x+15z-28x+35z}{21}
Margfaldaðu í 3\left(12x+5z\right)-7\left(4x-5z\right).
\frac{8x+50z}{21}
Sameinaðu svipaða liði í 36x+15z-28x+35z.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}