Meta
\sqrt{3}\approx 1.732050808
Spurningakeppni
Arithmetic
5 vandamál svipuð og:
\frac{ \left( \sqrt{ 6 } - \sqrt{ 12 } \right) \times \sqrt{ 3 } }{ \sqrt{ 6 } } + \sqrt{ 6 }
Deila
Afritað á klemmuspjald
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}}{\sqrt{6}}+\sqrt{6}
Stuðull 12=2^{2}\times 3. Endurskrifaðu kvaðratrót margfeldis \sqrt{2^{2}\times 3} sem margfeldi kvaðratróta \sqrt{2^{2}}\sqrt{3}. Finndu kvaðratrót 2^{2}.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}+\sqrt{6}
Gerðu nefnara \frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}}{\sqrt{6}} að ræðri tölu með því að margfalda teljarann og nefnarann með \sqrt{6}.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}\sqrt{6}}{6}+\sqrt{6}
\sqrt{6} í öðru veldi er 6.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}\sqrt{3}\sqrt{2}}{6}+\sqrt{6}
Stuðull 6=3\times 2. Endurskrifaðu kvaðratrót margfeldis \sqrt{3\times 2} sem margfeldi kvaðratróta \sqrt{3}\sqrt{2}.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\times 3\sqrt{2}}{6}+\sqrt{6}
Margfaldaðu \sqrt{3} og \sqrt{3} til að fá út 3.
\left(\sqrt{6}-2\sqrt{3}\right)\times \frac{1}{2}\sqrt{2}+\sqrt{6}
Deildu \left(\sqrt{6}-2\sqrt{3}\right)\times 3\sqrt{2} með 6 til að fá \left(\sqrt{6}-2\sqrt{3}\right)\times \frac{1}{2}\sqrt{2}.
\left(\sqrt{6}\times \frac{1}{2}-2\sqrt{3}\times \frac{1}{2}\right)\sqrt{2}+\sqrt{6}
Notaðu dreifieiginleika til að margfalda \sqrt{6}-2\sqrt{3} með \frac{1}{2}.
\left(\sqrt{6}\times \frac{1}{2}-\sqrt{3}\right)\sqrt{2}+\sqrt{6}
Margfaldaðu -2 sinnum \frac{1}{2}.
\sqrt{6}\times \frac{1}{2}\sqrt{2}-\sqrt{3}\sqrt{2}+\sqrt{6}
Notaðu dreifieiginleika til að margfalda \sqrt{6}\times \frac{1}{2}-\sqrt{3} með \sqrt{2}.
\sqrt{2}\sqrt{3}\times \frac{1}{2}\sqrt{2}-\sqrt{3}\sqrt{2}+\sqrt{6}
Stuðull 6=2\times 3. Endurskrifaðu kvaðratrót margfeldis \sqrt{2\times 3} sem margfeldi kvaðratróta \sqrt{2}\sqrt{3}.
2\times \frac{1}{2}\sqrt{3}-\sqrt{3}\sqrt{2}+\sqrt{6}
Margfaldaðu \sqrt{2} og \sqrt{2} til að fá út 2.
\sqrt{3}-\sqrt{3}\sqrt{2}+\sqrt{6}
Styttu burt 2 og 2.
\sqrt{3}-\sqrt{6}+\sqrt{6}
Til að margfalda \sqrt{3} og \sqrt{2} skaltu margfalda tölurnar undir kvaðratrótinni.
\sqrt{3}
Sameinaðu -\sqrt{6} og \sqrt{6} til að fá 0.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}