Leystu fyrir x
x = \frac{1254}{25} = 50\frac{4}{25} = 50.16
Graf
Spurningakeppni
Linear Equation
5 vandamál svipuð og:
\frac { 6 + \frac { 20 } { 100 } x } { 100 + \frac { 20 } { 100 } } = \frac { 16 } { 100 }
Deila
Afritað á klemmuspjald
\frac{6+\frac{1}{5}x}{100+\frac{20}{100}}=\frac{16}{100}
Minnka brotið \frac{20}{100} eins mikið og hægt er með því að draga og stytta út 20.
\frac{6+\frac{1}{5}x}{100+\frac{1}{5}}=\frac{16}{100}
Minnka brotið \frac{20}{100} eins mikið og hægt er með því að draga og stytta út 20.
\frac{6+\frac{1}{5}x}{\frac{500}{5}+\frac{1}{5}}=\frac{16}{100}
Breyta 100 í brot \frac{500}{5}.
\frac{6+\frac{1}{5}x}{\frac{500+1}{5}}=\frac{16}{100}
Þar sem \frac{500}{5} og \frac{1}{5} eru með sama nefnara skaltu leggja saman með því að leggja saman teljarana.
\frac{6+\frac{1}{5}x}{\frac{501}{5}}=\frac{16}{100}
Leggðu saman 500 og 1 til að fá 501.
\frac{6+\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Minnka brotið \frac{16}{100} eins mikið og hægt er með því að draga og stytta út 4.
\frac{6}{\frac{501}{5}}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Deildu í hvern lið í 6+\frac{1}{5}x með \frac{501}{5} til að fá \frac{6}{\frac{501}{5}}+\frac{\frac{1}{5}x}{\frac{501}{5}}.
6\times \frac{5}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Deildu 6 með \frac{501}{5} með því að margfalda 6 með umhverfu \frac{501}{5}.
\frac{6\times 5}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Sýndu 6\times \frac{5}{501} sem eitt brot.
\frac{30}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Margfaldaðu 6 og 5 til að fá út 30.
\frac{10}{167}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Minnka brotið \frac{30}{501} eins mikið og hægt er með því að draga og stytta út 3.
\frac{10}{167}+\frac{1}{501}x=\frac{4}{25}
Deildu \frac{1}{5}x með \frac{501}{5} til að fá \frac{1}{501}x.
\frac{1}{501}x=\frac{4}{25}-\frac{10}{167}
Dragðu \frac{10}{167} frá báðum hliðum.
\frac{1}{501}x=\frac{668}{4175}-\frac{250}{4175}
Sjaldgæfasta margfeldi 25 og 167 er 4175. Breyttu \frac{4}{25} og \frac{10}{167} í brot með nefnaranum 4175.
\frac{1}{501}x=\frac{668-250}{4175}
Þar sem \frac{668}{4175} og \frac{250}{4175} eru með sama nefnara skaltu draga frá með því að nota frádrátt á teljarana.
\frac{1}{501}x=\frac{418}{4175}
Dragðu 250 frá 668 til að fá út 418.
x=\frac{418}{4175}\times 501
Margfaldaðu báðar hliðar með 501, umhverfu \frac{1}{501}.
x=\frac{418\times 501}{4175}
Sýndu \frac{418}{4175}\times 501 sem eitt brot.
x=\frac{209418}{4175}
Margfaldaðu 418 og 501 til að fá út 209418.
x=\frac{1254}{25}
Minnka brotið \frac{209418}{4175} eins mikið og hægt er með því að draga og stytta út 167.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}