Meta
4\sqrt{6}\approx 9.797958971
Deila
Afritað á klemmuspjald
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Gerðu nefnara \frac{4\sqrt{3}}{2-\sqrt{2}} að ræðri tölu með því að margfalda teljarann og nefnarann með 2+\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Íhugaðu \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Hægt er að breyta margföldun í mismun annarra velda með reglunni: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{4-2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Hefðu 2 í annað veldi. Hefðu \sqrt{2} í annað veldi.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Dragðu 2 frá 4 til að fá út 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Stuðull 18=3^{2}\times 2. Endurskrifaðu kvaðratrót margfeldis \sqrt{3^{2}\times 2} sem margfeldi kvaðratróta \sqrt{3^{2}}\sqrt{2}. Finndu kvaðratrót 3^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right)}-\frac{\sqrt{18}}{3-\sqrt{12}}
Gerðu nefnara \frac{30}{4\sqrt{3}-3\sqrt{2}} að ræðri tölu með því að margfalda teljarann og nefnarann með 4\sqrt{3}+3\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Íhugaðu \left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right). Hægt er að breyta margföldun í mismun annarra velda með reglunni: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Víkka \left(4\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Reiknaðu 4 í 2. veldi og fáðu 16.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\times 3-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{3} í öðru veldi er 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Margfaldaðu 16 og 3 til að fá út 48.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Víkka \left(-3\sqrt{2}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Reiknaðu -3 í 2. veldi og fáðu 9.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\times 2}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{2} í öðru veldi er 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{\sqrt{18}}{3-\sqrt{12}}
Margfaldaðu 9 og 2 til að fá út 18.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{\sqrt{18}}{3-\sqrt{12}}
Dragðu 18 frá 48 til að fá út 30.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\left(4\sqrt{3}+3\sqrt{2}\right)-\frac{\sqrt{18}}{3-\sqrt{12}}
Styttu burt 30 og 30.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{\sqrt{18}}{3-\sqrt{12}}
Til að finna andstæðu 4\sqrt{3}+3\sqrt{2} skaltu finna andstæðu hvers liðs.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-\sqrt{12}}
Stuðull 18=3^{2}\times 2. Endurskrifaðu kvaðratrót margfeldis \sqrt{3^{2}\times 2} sem margfeldi kvaðratróta \sqrt{3^{2}}\sqrt{2}. Finndu kvaðratrót 3^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-2\sqrt{3}}
Stuðull 12=2^{2}\times 3. Endurskrifaðu kvaðratrót margfeldis \sqrt{2^{2}\times 3} sem margfeldi kvaðratróta \sqrt{2^{2}}\sqrt{3}. Finndu kvaðratrót 2^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}
Gerðu nefnara \frac{3\sqrt{2}}{3-2\sqrt{3}} að ræðri tölu með því að margfalda teljarann og nefnarann með 3+2\sqrt{3}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{3^{2}-\left(-2\sqrt{3}\right)^{2}}
Íhugaðu \left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right). Hægt er að breyta margföldun í mismun annarra velda með reglunni: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\sqrt{3}\right)^{2}}
Reiknaðu 3 í 2. veldi og fáðu 9.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Víkka \left(-2\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
Reiknaðu -2 í 2. veldi og fáðu 4.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\times 3}
\sqrt{3} í öðru veldi er 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-12}
Margfaldaðu 4 og 3 til að fá út 12.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{-3}
Dragðu 12 frá 9 til að fá út -3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\left(-\sqrt{2}\left(3+2\sqrt{3}\right)\right)
Styttu burt -3 og -3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Gagnstæð tala tölunnar -\sqrt{2}\left(3+2\sqrt{3}\right) er \sqrt{2}\left(3+2\sqrt{3}\right).
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}+\frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Til að leggja saman eða draga saman segðir skaltu stækka þær til að nefnararnir verði eins. Margfaldaðu -4\sqrt{3}-3\sqrt{2} sinnum \frac{2}{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Þar sem \frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2} og \frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2} eru með sama nefnara skaltu leggja saman með því að leggja saman teljarana.
\frac{8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Margfaldaðu í 4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right).
\frac{4\sqrt{6}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Reiknaðu í 8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}.
2\sqrt{6}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Deildu í hvern lið í 4\sqrt{6}-6\sqrt{2} með 2 til að fá 2\sqrt{6}-3\sqrt{2}.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{2}\sqrt{3}
Notaðu dreifieiginleika til að margfalda \sqrt{2} með 3+2\sqrt{3}.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{6}
Til að margfalda \sqrt{2} og \sqrt{3} skaltu margfalda tölurnar undir kvaðratrótinni.
2\sqrt{6}+2\sqrt{6}
Sameinaðu -3\sqrt{2} og 3\sqrt{2} til að fá 0.
4\sqrt{6}
Sameinaðu 2\sqrt{6} og 2\sqrt{6} til að fá 4\sqrt{6}.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}