Leystu fyrir x
x=-3
x=-2
Graf
Spurningakeppni
Quadratic Equation
\frac { 2 x } { x - 4 } + \frac { 3 } { x - 3 } + 4 = \frac { 30 + 5 x ^ { 2 } - 36 x } { x ^ { 2 } - 7 x + 12 }
Deila
Afritað á klemmuspjald
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Breytan x getur ekki verið jöfn neinum af gildunum í 3,4, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með \left(x-4\right)\left(x-3\right), minnsta sameiginlega margfeldi x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-3 með 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda 2x-6 með x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Sameinaðu -6x og 3x til að fá -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með x-3 og sameina svipuð hugtök.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x^{2}-7x+12 með 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Sameinaðu 2x^{2} og 4x^{2} til að fá 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Sameinaðu -3x og -28x til að fá -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Leggðu saman -12 og 48 til að fá 36.
6x^{2}-31x+36-30=5x^{2}-36x
Dragðu 30 frá báðum hliðum.
6x^{2}-31x+6=5x^{2}-36x
Dragðu 30 frá 36 til að fá út 6.
6x^{2}-31x+6-5x^{2}=-36x
Dragðu 5x^{2} frá báðum hliðum.
x^{2}-31x+6=-36x
Sameinaðu 6x^{2} og -5x^{2} til að fá x^{2}.
x^{2}-31x+6+36x=0
Bættu 36x við báðar hliðar.
x^{2}+5x+6=0
Sameinaðu -31x og 36x til að fá 5x.
a+b=5 ab=6
Leystu jöfnuna með því að þátta x^{2}+5x+6 með formúlunni x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Settu upp kerfi til að leysa til þess að finna a og b.
1,6 2,3
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er plús eru a og b bæði plús. Skráðu inn öll slík pör sem gefa margfeldið 6.
1+6=7 2+3=5
Reiknaðu summuna fyrir hvert par.
a=2 b=3
Lausnin er parið sem gefur summuna 5.
\left(x+2\right)\left(x+3\right)
Endurskrifaðu þáttuðu segðina \left(x+a\right)\left(x+b\right) með því að nota fengin gildi.
x=-2 x=-3
Leystu x+2=0 og x+3=0 til að finna lausnir jöfnunnar.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Breytan x getur ekki verið jöfn neinum af gildunum í 3,4, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með \left(x-4\right)\left(x-3\right), minnsta sameiginlega margfeldi x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-3 með 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda 2x-6 með x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Sameinaðu -6x og 3x til að fá -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með x-3 og sameina svipuð hugtök.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x^{2}-7x+12 með 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Sameinaðu 2x^{2} og 4x^{2} til að fá 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Sameinaðu -3x og -28x til að fá -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Leggðu saman -12 og 48 til að fá 36.
6x^{2}-31x+36-30=5x^{2}-36x
Dragðu 30 frá báðum hliðum.
6x^{2}-31x+6=5x^{2}-36x
Dragðu 30 frá 36 til að fá út 6.
6x^{2}-31x+6-5x^{2}=-36x
Dragðu 5x^{2} frá báðum hliðum.
x^{2}-31x+6=-36x
Sameinaðu 6x^{2} og -5x^{2} til að fá x^{2}.
x^{2}-31x+6+36x=0
Bættu 36x við báðar hliðar.
x^{2}+5x+6=0
Sameinaðu -31x og 36x til að fá 5x.
a+b=5 ab=1\times 6=6
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem x^{2}+ax+bx+6. Settu upp kerfi til að leysa til þess að finna a og b.
1,6 2,3
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er plús eru a og b bæði plús. Skráðu inn öll slík pör sem gefa margfeldið 6.
1+6=7 2+3=5
Reiknaðu summuna fyrir hvert par.
a=2 b=3
Lausnin er parið sem gefur summuna 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
Endurskrifa x^{2}+5x+6 sem \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
Taktu x út fyrir sviga í fyrsta hópi og 3 í öðrum hópi.
\left(x+2\right)\left(x+3\right)
Taktu sameiginlega liðinn x+2 út fyrir sviga með því að nota dreifieiginleika.
x=-2 x=-3
Leystu x+2=0 og x+3=0 til að finna lausnir jöfnunnar.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Breytan x getur ekki verið jöfn neinum af gildunum í 3,4, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með \left(x-4\right)\left(x-3\right), minnsta sameiginlega margfeldi x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-3 með 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda 2x-6 með x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Sameinaðu -6x og 3x til að fá -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með x-3 og sameina svipuð hugtök.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x^{2}-7x+12 með 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Sameinaðu 2x^{2} og 4x^{2} til að fá 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Sameinaðu -3x og -28x til að fá -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Leggðu saman -12 og 48 til að fá 36.
6x^{2}-31x+36-30=5x^{2}-36x
Dragðu 30 frá báðum hliðum.
6x^{2}-31x+6=5x^{2}-36x
Dragðu 30 frá 36 til að fá út 6.
6x^{2}-31x+6-5x^{2}=-36x
Dragðu 5x^{2} frá báðum hliðum.
x^{2}-31x+6=-36x
Sameinaðu 6x^{2} og -5x^{2} til að fá x^{2}.
x^{2}-31x+6+36x=0
Bættu 36x við báðar hliðar.
x^{2}+5x+6=0
Sameinaðu -31x og 36x til að fá 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, 5 inn fyrir b og 6 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Hefðu 5 í annað veldi.
x=\frac{-5±\sqrt{25-24}}{2}
Margfaldaðu -4 sinnum 6.
x=\frac{-5±\sqrt{1}}{2}
Leggðu 25 saman við -24.
x=\frac{-5±1}{2}
Finndu kvaðratrót 1.
x=-\frac{4}{2}
Leystu nú jöfnuna x=\frac{-5±1}{2} þegar ± er plús. Leggðu -5 saman við 1.
x=-2
Deildu -4 með 2.
x=-\frac{6}{2}
Leystu nú jöfnuna x=\frac{-5±1}{2} þegar ± er mínus. Dragðu 1 frá -5.
x=-3
Deildu -6 með 2.
x=-2 x=-3
Leyst var úr jöfnunni.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Breytan x getur ekki verið jöfn neinum af gildunum í 3,4, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með \left(x-4\right)\left(x-3\right), minnsta sameiginlega margfeldi x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-3 með 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda 2x-6 með x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Sameinaðu -6x og 3x til að fá -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x-4 með x-3 og sameina svipuð hugtök.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Notaðu dreifieiginleika til að margfalda x^{2}-7x+12 með 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Sameinaðu 2x^{2} og 4x^{2} til að fá 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Sameinaðu -3x og -28x til að fá -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Leggðu saman -12 og 48 til að fá 36.
6x^{2}-31x+36-5x^{2}=30-36x
Dragðu 5x^{2} frá báðum hliðum.
x^{2}-31x+36=30-36x
Sameinaðu 6x^{2} og -5x^{2} til að fá x^{2}.
x^{2}-31x+36+36x=30
Bættu 36x við báðar hliðar.
x^{2}+5x+36=30
Sameinaðu -31x og 36x til að fá 5x.
x^{2}+5x=30-36
Dragðu 36 frá báðum hliðum.
x^{2}+5x=-6
Dragðu 36 frá 30 til að fá út -6.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Deildu 5, stuðli x-liðarins, með 2 til að fá \frac{5}{2}. Leggðu síðan tvíveldi \frac{5}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Hefðu \frac{5}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Leggðu -6 saman við \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Stuðull x^{2}+5x+\frac{25}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Einfaldaðu.
x=-2 x=-3
Dragðu \frac{5}{2} frá báðum hliðum jöfnunar.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}