Leystu fyrir b
b=-\frac{\sqrt{3}\left(a-4\sqrt{3}-7\right)}{3}
Leystu fyrir a
a=-\sqrt{3}b+4\sqrt{3}+7
Spurningakeppni
Algebra
5 vandamál svipuð og:
\frac { 2 + \sqrt { 3 } } { 2 - \sqrt { 3 } } = a + b \sqrt { 3 }
Deila
Afritað á klemmuspjald
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=a+b\sqrt{3}
Gerðu nefnara \frac{2+\sqrt{3}}{2-\sqrt{3}} að ræðri tölu með því að margfalda teljarann og nefnarann með 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Íhugaðu \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Hægt er að breyta margföldun í mismun annarra velda með reglunni: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}=a+b\sqrt{3}
Hefðu 2 í annað veldi. Hefðu \sqrt{3} í annað veldi.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}=a+b\sqrt{3}
Dragðu 3 frá 4 til að fá út 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)=a+b\sqrt{3}
Ef tölu er deilt með einum er niðurstaðan alltaf óbreytt tala.
\left(2+\sqrt{3}\right)^{2}=a+b\sqrt{3}
Margfaldaðu 2+\sqrt{3} og 2+\sqrt{3} til að fá út \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}=a+b\sqrt{3}
Notaðu tvíliðusetninguna \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til að stækka \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3=a+b\sqrt{3}
\sqrt{3} í öðru veldi er 3.
7+4\sqrt{3}=a+b\sqrt{3}
Leggðu saman 4 og 3 til að fá 7.
a+b\sqrt{3}=7+4\sqrt{3}
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
b\sqrt{3}=7+4\sqrt{3}-a
Dragðu a frá báðum hliðum.
\sqrt{3}b=-a+4\sqrt{3}+7
Jafnan er í staðalformi.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Deildu báðum hliðum með \sqrt{3}.
b=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Að deila með \sqrt{3} afturkallar margföldun með \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+4\sqrt{3}+7\right)}{3}
Deildu 4\sqrt{3}-a+7 með \sqrt{3}.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}