Beint í aðalefni
Meta
Tick mark Image
Diffra með hliðsjón af x
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Stuðull x^{2}-1. Stuðull x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Til að leggja saman eða draga saman segðir skaltu stækka þær til að nefnararnir verði eins. Minnsta sameiginlega margfeldi \left(x-1\right)\left(x+1\right) og \left(x-1\right)\left(x+4\right) er \left(x-1\right)\left(x+1\right)\left(x+4\right). Margfaldaðu \frac{1}{\left(x-1\right)\left(x+1\right)} sinnum \frac{x+4}{x+4}. Margfaldaðu \frac{2}{\left(x-1\right)\left(x+4\right)} sinnum \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Þar sem \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} og \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} eru með sama nefnara skaltu draga frá með því að nota frádrátt á teljarana.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Margfaldaðu í x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Sameinaðu svipaða liði í x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
Stuðull x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Til að leggja saman eða draga saman segðir skaltu stækka þær til að nefnararnir verði eins. Minnsta sameiginlega margfeldi \left(x-1\right)\left(x+1\right)\left(x+4\right) og \left(x-3\right)\left(x+1\right) er \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). Margfaldaðu \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} sinnum \frac{x-3}{x-3}. Margfaldaðu \frac{1}{\left(x-3\right)\left(x+1\right)} sinnum \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Þar sem \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} og \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} eru með sama nefnara skaltu leggja saman með því að leggja saman teljarana.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Margfaldaðu í \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Sameinaðu svipaða liði í -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
Víkka \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right).