Leystu fyrir a
a=-\frac{bf}{f-b}
b\neq 0\text{ and }f\neq 0\text{ and }f\neq b
Leystu fyrir b
b=-\frac{af}{f-a}
a\neq 0\text{ and }f\neq 0\text{ and }f\neq a
Spurningakeppni
Linear Equation
5 vandamál svipuð og:
\frac { 1 } { f } = \frac { 1 } { a } + \frac { 1 } { b }
Deila
Afritað á klemmuspjald
ab=bf+af
Breytan a getur ekki verið jöfn 0, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með abf, minnsta sameiginlega margfeldi f,a,b.
ab-af=bf
Dragðu af frá báðum hliðum.
\left(b-f\right)a=bf
Sameinaðu alla liði sem innihalda a.
\frac{\left(b-f\right)a}{b-f}=\frac{bf}{b-f}
Deildu báðum hliðum með b-f.
a=\frac{bf}{b-f}
Að deila með b-f afturkallar margföldun með b-f.
a=\frac{bf}{b-f}\text{, }a\neq 0
Breytan a getur ekki verið jöfn 0.
ab=bf+af
Breytan b getur ekki verið jöfn 0, þar sem deiling með núlli hefur ekki verið skilgreind. Margfaldaðu báðar hliðar jöfnunnar með abf, minnsta sameiginlega margfeldi f,a,b.
ab-bf=af
Dragðu bf frá báðum hliðum.
\left(a-f\right)b=af
Sameinaðu alla liði sem innihalda b.
\frac{\left(a-f\right)b}{a-f}=\frac{af}{a-f}
Deildu báðum hliðum með a-f.
b=\frac{af}{a-f}
Að deila með a-f afturkallar margföldun með a-f.
b=\frac{af}{a-f}\text{, }b\neq 0
Breytan b getur ekki verið jöfn 0.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}