Stuðull
\frac{\left(x-15y\right)\left(x+15y\right)}{9}
Meta
\frac{x^{2}}{9}-25y^{2}
Deila
Afritað á klemmuspjald
\frac{x^{2}-225y^{2}}{9}
Taktu \frac{1}{9} út fyrir sviga.
\left(x-15y\right)\left(x+15y\right)
Íhugaðu x^{2}-225y^{2}. Endurskrifa x^{2}-225y^{2} sem x^{2}-\left(15y\right)^{2}. Hægt er að þætta mismun annarra velda með reglunni: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\left(x-15y\right)\left(x+15y\right)}{9}
Endurskrifaðu alla þáttuðu segðina.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}