Beint í aðalefni
Diffra með hliðsjón af x
Tick mark Image
Meta
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

-\left(3x^{2}+2x^{1}+1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}+2x^{1}+1)
Ef F sett saman úr tveimur diffranlegum föllum, f\left(u\right) og u=g\left(x\right), það er, ef F\left(x\right)=f\left(g\left(x\right)\right), þá er afleiðan af F afleiðan af f námundað að u sinnum afleiðan af g námundað að x, það er, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(3x^{2}+2x^{1}+1\right)^{-2}\left(2\times 3x^{2-1}+2x^{1-1}\right)
Afleiða margliðu er summa afleiðna liðanna. Afleiða fastaliða er 0. Afleiða ax^{n} er nax^{n-1}.
\left(3x^{2}+2x^{1}+1\right)^{-2}\left(-6x^{1}-2x^{0}\right)
Einfaldaðu.
\left(3x^{2}+2x+1\right)^{-2}\left(-6x-2x^{0}\right)
Fyrir alla liði t, t^{1}=t.
\left(3x^{2}+2x+1\right)^{-2}\left(-6x-2\right)
Fyrir alla liði t nema 0, t^{0}=1.