Meta
\frac{\sin(90)\sin(x)+\cos(90)\cos(x)+\sin(3x)}{2\cos(x)\cos(2x)}
Diffra með hliðsjón af x
\frac{-36\cos(x)\left(\sin(x)\cos(\frac{3x}{2})\right)^{2}+18\sin(x)\sin(3x)\left(\cos(x)\right)^{2}+6\cos(3x)\left(\cos(x)\right)^{3}-6\sin(3x)\left(\sin(x)\right)^{3}+6\left(\cos(x)\right)^{4}-2\left(\sin(x)\right)^{4}+18\cos(x)\left(\sin(x)\right)^{2}+2\cos(3x)\sin(90-x)+6\sin(90)\sin(x)\sin(3x)+6\cos(90)\sin(3x)\cos(x)-3\left(\sin(2x)\right)^{2}+2\sin(90)}{2\left(\cos(x)+\cos(3x)\right)^{2}}
Graf
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}