Beint í aðalefni
Meta
Tick mark Image
Stuðull
Tick mark Image

Deila

\frac{\left(\sqrt{3}\right)^{2}+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Ef tölu er deilt með einum er niðurstaðan alltaf óbreytt tala.
\frac{3+4\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} í öðru veldi er 3.
\frac{3+4\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Gerðu nefnara \frac{1}{\sqrt{2}} að ræðri tölu með því að margfalda teljarann og nefnarann með \sqrt{2}.
\frac{3+4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} í öðru veldi er 2.
\frac{3+4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Til að hækka \frac{\sqrt{2}}{2} um veldu skaltu hefja bæði teljarann og nefnarann í sama veldi og svo deila.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2}{\sqrt{3}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Sýndu 4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} sem eitt brot.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Gerðu nefnara \frac{2}{\sqrt{3}} að ræðri tölu með því að margfalda teljarann og nefnarann með \sqrt{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \left(\frac{2\sqrt{3}}{3}\right)^{2}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} í öðru veldi er 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Til að hækka \frac{2\sqrt{3}}{3} um veldu skaltu hefja bæði teljarann og nefnarann í sama veldi og svo deila.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{3\times \left(2\sqrt{3}\right)^{2}}{3^{2}}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Sýndu 3\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} sem eitt brot.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Styttu burt 3 í bæði teljara og samnefnara.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+5\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
Reiknaðu 0 í 2. veldi og fáðu 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}+0}{2+2-\left(\sqrt{3}\right)^{2}}
Margfaldaðu 5 og 0 til að fá út 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{\left(2\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Leggðu saman 3 og 0 til að fá 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Víkka \left(2\sqrt{3}\right)^{2}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Reiknaðu 2 í 2. veldi og fáðu 4.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{4\times 3}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} í öðru veldi er 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{12}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Margfaldaðu 4 og 3 til að fá út 12.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}+4}{2+2-\left(\sqrt{3}\right)^{2}}
Deildu 12 með 3 til að fá 4.
\frac{7+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Leggðu saman 3 og 4 til að fá 7.
\frac{7+\frac{4\times 2}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} í öðru veldi er 2.
\frac{7+\frac{8}{2^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Margfaldaðu 4 og 2 til að fá út 8.
\frac{7+\frac{8}{4}}{2+2-\left(\sqrt{3}\right)^{2}}
Reiknaðu 2 í 2. veldi og fáðu 4.
\frac{7+2}{2+2-\left(\sqrt{3}\right)^{2}}
Deildu 8 með 4 til að fá 2.
\frac{9}{2+2-\left(\sqrt{3}\right)^{2}}
Leggðu saman 7 og 2 til að fá 9.
\frac{9}{4-\left(\sqrt{3}\right)^{2}}
Leggðu saman 2 og 2 til að fá 4.
\frac{9}{4-3}
\sqrt{3} í öðru veldi er 3.
\frac{9}{1}
Dragðu 3 frá 4 til að fá út 1.
9
Ef tölu er deilt með einum er niðurstaðan alltaf óbreytt tala.