Beint í aðalefni
Leystu fyrir x
Tick mark Image
Leystu fyrir u
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\left(y^{2}+z^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
Margfaldaðu báðar hliðar jöfnunnar með y^{2}+z^{2}.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{2}+z^{2}\right)^{2}
Notaðu dreifieiginleika til að margfalda y^{2}+z^{2} með \frac{\mathrm{d}}{\mathrm{d}y}(u).
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(\left(y^{2}\right)^{2}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
Notaðu tvíliðusetninguna \left(a+b\right)^{2}=a^{2}+2ab+b^{2} til að stækka \left(y^{2}+z^{2}\right)^{2}.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+\left(z^{2}\right)^{2}\right)
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 2 til að fá út 4.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)\left(y^{4}+2y^{2}z^{2}+z^{4}\right)
Margfaldaðu veldisvísa til að hefja veldi í annað veldi. Margfaldaðu 2 og 2 til að fá út 4.
y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)=\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}
Notaðu dreifieiginleika til að margfalda -x með y^{4}+2y^{2}z^{2}+z^{4}.
\left(-x\right)y^{4}+2\left(-x\right)y^{2}z^{2}+\left(-x\right)z^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
-xy^{4}-2xy^{2}z^{2}-xz^{4}=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
Margfaldaðu 2 og -1 til að fá út -2.
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=y^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)+z^{2}\frac{\mathrm{d}}{\mathrm{d}y}(u)
Sameinaðu alla liði sem innihalda x.
\left(-y^{4}-2y^{2}z^{2}-z^{4}\right)x=0
Jafnan er í staðalformi.
x=0
Deildu 0 með -y^{4}-2y^{2}z^{2}-z^{4}.