Leystu fyrir x (complex solution)
\left\{\begin{matrix}x=\frac{i\sin(A)}{-i\cos(A)+i}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }A=\pi n_{1}\\x\neq 0\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }A=2\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }A=\pi n_{1}\end{matrix}\right.
Leystu fyrir A
\left\{\begin{matrix}A=\arcsin(\frac{2x}{x^{2}+1})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}>\frac{\arcsin(\frac{2x}{x^{2}+1})}{\pi }+2n_{2}-1\text{ and }n_{1}<\frac{\arcsin(\frac{2x}{x^{2}+1})}{\pi }+2n_{2}\right)\text{, }&|x|\geq 1\\A=-\arcsin(\frac{2x}{x^{2}+1})+2\pi n_{3}+\pi \text{, }n_{3}\in \mathrm{Z}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(n_{1}>-\frac{\arcsin(\frac{2x}{x^{2}+1})}{\pi }+2n_{3}\text{ and }n_{1}<-\frac{\arcsin(\frac{2x}{x^{2}+1})}{\pi }+2n_{3}+1\right)\text{, }&|x|\leq 1\text{ and }x\neq 0\end{matrix}\right.
Leystu fyrir x
x=\cot(\frac{A}{2})
\exists n_{1}\in \mathrm{Z}\text{ : }\left(A>\pi n_{1}\text{ and }A<\pi n_{1}+\pi \right)
Graf
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}