Lewati ke konten utama
Microsoft
|
Math Solver
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Dasar
Aljabar
trigonometri
Kalkulus
statistik
Matriks
Karakter
Cari nilai x
x=\pi n_{1}+\arctan(2)\text{, }n_{1}\in \mathrm{Z}
x=\pi n_{2}+\pi -\arctan(2)\text{, }n_{2}\in \mathrm{Z}
Grafik
Kedua Sisi Grafik dalam 2D
Grafik dalam 2D
Kuis
Trigonometry
5 soal serupa dengan:
{ \tan ( x ) } ^ {2} = 4
Soal yang Mirip dari Pencarian Web
How do you find the derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-find-the-derivative-of-1-tanx-2
Derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} is \displaystyle-{2}{{\sec}^{{2}}{x}}+{2}{\tan{{x}}}{{\sec}^{{2}}{x}} Explanation: We can use Chain rule here. Let \displaystyle{f{{\left({x}\right)}}}={\left({1}-{\tan{{x}}}\right)}^{{2}} ...
How do you multiply and simplify \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-multiply-and-simplify-1-tanx-2
see below Explanation: \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}}={\left({1}+{\tan{{x}}}\right)}{\left({1}+{\tan{{x}}}\right)} ---> FOIL \displaystyle={1}+{\tan{{x}}}+{\tan{{x}}}+{{\tan}^{{2}}{x}} ...
How to integrate (x+\tan x)^2
https://www.quora.com/How-do-I-integrate-x-tan-x-2
Open the brackets. You then have three separate integrals. The first \int x^2dx is simple and equal to \frac {x^3}{3}. The second \int\tan^2xdx is also simple if you remember that \frac {d (\tan x)}{dx}=1+\tan^{2}x ...
Deducing the series expansion of \arctan(x^2) via the series expansion of \arctan(x) at x=0
https://math.stackexchange.com/questions/1652236/deducing-the-series-expansion-of-arctanx2-via-the-series-expansion-of-ar
This approach is perfectly valid. When we have a series \sum_{n=0}^\infty a_nx^n then replacing x\mapsto x^2 we get \sum_{n=0}^\infty a_nx^{2n}=\sum_{n=0}^\infty b_nx^n which is a power ...
\displaystyle{{\tan}^{{2}}{\left({x}\right)}}={0} How can you solve for \displaystyle{x} ?
https://socratic.org/questions/tan-2-x-0-how-can-you-solve-for-x
\displaystyle{x}={k}\pi,{k}\in{Z} Explanation: \displaystyle{{\tan}^{{2}}{x}}={0}\Rightarrow{\left({\tan{{x}}}\right)}^{{2}}={0}\Rightarrow{\tan{{x}}}={0}\Rightarrow{\sin{{x}}}={0} \displaystyle\Rightarrow{x}={k}\pi,{k}\in{Z}
How many solutions does a trigonometric function have 0\le x \le 2\pi?
https://math.stackexchange.com/questions/2118471/how-many-solutions-does-a-trigonometric-function-have-0-le-x-le-2-pi
I do one, you do the other: \tan^22x=1\iff \tan 2x=\pm1\iff 2x=\pm\frac\pi4+k\pi\;,\;\;k\in\Bbb Z\iff \iff x=\pm\frac\pi8+k\frac\pi2\;,\;\;k\in\Bbb Z Hint for the other: \sin3x=-\frac14\iff3x=\arcsin\left(-\frac14\right)+2k\pi\ldots\ldots\text{etc.}
Lebih banyak Item
Bagikan
Salin
Disalin ke clipboard
Masalah Serupa
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Kembali ke atas