Lewati ke konten utama
Microsoft
|
Math Solver
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Dasar
Aljabar
trigonometri
Kalkulus
statistik
Matriks
Karakter
mode(2,4,5,3,2,4,5,6,4,3,2)
Evaluasi
2,4
Kuis
mode(2,4,5,3,2,4,5,6,4,3,2)
Soal yang Mirip dari Pencarian Web
mn+1 \equiv 0 \pmod{24} then : m+n \equiv 0 \pmod{24} using group theory
https://math.stackexchange.com/questions/2350421/mn1-equiv-0-pmod24-then-mn-equiv-0-pmod24-using-group-theory
You're trying to prove that if mn \equiv -1 \pmod{24} then m \equiv -n \pmod{24}. Let k = -n. Then you're trying to show that if -mk \equiv -1 \pmod{24} then m \equiv k \pmod{24}. Of ...
Can we ever have \Gamma \models \perp
https://math.stackexchange.com/questions/2639449/can-we-ever-have-gamma-models-perp
That's exactly right: "\Gamma\models\perp" is equivalent to "\Gamma has no model" (or "\Gamma is unsatisfiable").
Is this proof about Mersenne numbers acceptable?
https://math.stackexchange.com/questions/86429/is-this-proof-about-mersenne-numbers-acceptable
There is nothing incorrect, but there are a few things that could be changed. We only need p>2. From 2^p \equiv 2 \pmod {p} one should conclude M_p=2^p -1\equiv 1 \pmod{p} immediately, without ...
Solving system of linear congruence equations
https://math.stackexchange.com/questions/473711/solving-system-of-linear-congruence-equations
The way you express your congruences is rather unconventional. Given that 23d\equiv1\pmod{40}, 73d\equiv1\pmod{102}, and that 40=2^3\times5 and 102=2\times3\times17, it follows that 23d\equiv1\pmod5, ...
How to prove an element of a given structure is not definable?
https://math.stackexchange.com/questions/927915/how-to-prove-an-element-of-a-given-structure-is-not-definable
HINT: If x is a definable element in a structure \mathcal M, then any automorphism of \cal M must satisfy f(x)=x. To show that 2 is not definable, find an automorphism of \cal A such that ...
The deduction theorem according to AIMA
https://math.stackexchange.com/questions/13251/the-deduction-theorem-according-to-aima
In order for \alpha\Rightarrow\beta to be valid, it must hold in all models; for \alpha\Rightarrow\beta to not be valid, there must be a model where it is false. If there is a model where it is ...
Lebih banyak Item
Bagikan
Salin
Disalin ke clipboard
Masalah Serupa
mode(1,2,3,2,1,2,3)
mode(1,2,3)
mode(20,34,32,35,45,32,45,32,32)
mode(2,4,5,3,2,4,5,6,4,3,2)
mode(10,11,10,12)
mode(1,1,2,2,3,3)
Kembali ke atas