Lewati ke konten utama
Cari nilai x
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

a+b=2 ab=-24
Untuk menyelesaikan persamaan, faktor x^{2}+2x-24 menggunakan rumus x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,24 -2,12 -3,8 -4,6
Karena ab negatif, a dan b memiliki tanda berlawanan. Karena a+b positif, angka positif memiliki nilai absolut yang lebih besar dari negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Hitung jumlah untuk setiap pasangan.
a=-4 b=6
Penyelesaiannya adalah pasangan yang memberikan jumlah 2.
\left(x-4\right)\left(x+6\right)
Tulis ulang ekspresi yang difaktorkan \left(x+a\right)\left(x+b\right) menggunakan nilai yang diperoleh.
x=4 x=-6
Untuk menemukan solusi persamaan, selesaikan x-4=0 dan x+6=0.
a+b=2 ab=1\left(-24\right)=-24
Untuk menyelesaikan persamaan, faktor sisi kiri dengan pengelompokan. Pertama, sisi kiri harus ditulis ulang sebagai x^{2}+ax+bx-24. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,24 -2,12 -3,8 -4,6
Karena ab negatif, a dan b memiliki tanda berlawanan. Karena a+b positif, angka positif memiliki nilai absolut yang lebih besar dari negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Hitung jumlah untuk setiap pasangan.
a=-4 b=6
Penyelesaiannya adalah pasangan yang memberikan jumlah 2.
\left(x^{2}-4x\right)+\left(6x-24\right)
Tulis ulang x^{2}+2x-24 sebagai \left(x^{2}-4x\right)+\left(6x-24\right).
x\left(x-4\right)+6\left(x-4\right)
Faktor x di pertama dan 6 dalam grup kedua.
\left(x-4\right)\left(x+6\right)
Factor istilah umum x-4 dengan menggunakan properti distributif.
x=4 x=-6
Untuk menemukan solusi persamaan, selesaikan x-4=0 dan x+6=0.
x^{2}+2x-24=0
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
x=\frac{-2±\sqrt{2^{2}-4\left(-24\right)}}{2}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 1 dengan a, 2 dengan b, dan -24 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-24\right)}}{2}
2 kuadrat.
x=\frac{-2±\sqrt{4+96}}{2}
Kalikan -4 kali -24.
x=\frac{-2±\sqrt{100}}{2}
Tambahkan 4 sampai 96.
x=\frac{-2±10}{2}
Ambil akar kuadrat dari 100.
x=\frac{8}{2}
Sekarang selesaikan persamaan x=\frac{-2±10}{2} jika ± adalah plus. Tambahkan -2 sampai 10.
x=4
Bagi 8 dengan 2.
x=-\frac{12}{2}
Sekarang selesaikan persamaan x=\frac{-2±10}{2} jika ± adalah minus. Kurangi 10 dari -2.
x=-6
Bagi -12 dengan 2.
x=4 x=-6
Persamaan kini terselesaikan.
x^{2}+2x-24=0
Persamaan kuadrat seperti yang ini dapat diselesaikan dengan melengkapi kuadrat. Agar dapat melengkapi kuadratnya, persamaan harus dalam bentuk x^{2}+bx=c.
x^{2}+2x-24-\left(-24\right)=-\left(-24\right)
Tambahkan 24 ke kedua sisi persamaan.
x^{2}+2x=-\left(-24\right)
Mengurangi -24 dari bilangan itu sendiri menghasilkan 0.
x^{2}+2x=24
Kurangi -24 dari 0.
x^{2}+2x+1^{2}=24+1^{2}
Bagi 2, koefisien dari suku x, dengan 2 untuk mendapatkan 1. Lalu tambahkan kuadrat dari 1 ke kedua sisi persamaan. Langkah ini membuat sisi kiri persamaan menjadi kuadrat yang sempurna.
x^{2}+2x+1=24+1
1 kuadrat.
x^{2}+2x+1=25
Tambahkan 24 sampai 1.
\left(x+1\right)^{2}=25
Faktorkan x^{2}+2x+1. Secara umum, ketika x^{2}+bx+c adalah kuadrat yang sempurna, itu selalu dapat difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
Ambil akar kuadrat dari kedua sisi persamaan.
x+1=5 x+1=-5
Sederhanakan.
x=4 x=-6
Kurangi 1 dari kedua sisi persamaan.