Cari nilai y
y=\frac{1}{2}=0,5
Grafik
Bagikan
Disalin ke clipboard
4y^{2}-4y+1=0
Gunakan properti distributif untuk mengalikan 4y dengan y-1.
a+b=-4 ab=4\times 1=4
Untuk menyelesaikan persamaan, faktor sisi kiri dengan pengelompokan. Pertama, sisi kiri harus ditulis ulang sebagai 4y^{2}+ay+by+1. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,-4 -2,-2
Karena ab positif, a dan b memiliki tanda sama. Karena a+b negatif, a dan b keduanya negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk 4.
-1-4=-5 -2-2=-4
Hitung jumlah untuk setiap pasangan.
a=-2 b=-2
Penyelesaiannya adalah pasangan yang memberikan jumlah -4.
\left(4y^{2}-2y\right)+\left(-2y+1\right)
Tulis ulang 4y^{2}-4y+1 sebagai \left(4y^{2}-2y\right)+\left(-2y+1\right).
2y\left(2y-1\right)-\left(2y-1\right)
Faktor 2y di pertama dan -1 dalam grup kedua.
\left(2y-1\right)\left(2y-1\right)
Factor istilah umum 2y-1 dengan menggunakan properti distributif.
\left(2y-1\right)^{2}
Tulis ulang sebagai kuadrat binominal.
y=\frac{1}{2}
Untuk menemukan penyelesaian persamaan, selesaikan 2y-1=0.
4y^{2}-4y+1=0
Gunakan properti distributif untuk mengalikan 4y dengan y-1.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 4 dengan a, -4 dengan b, dan 1 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
-4 kuadrat.
y=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
Kalikan -4 kali 4.
y=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
Tambahkan 16 sampai -16.
y=-\frac{-4}{2\times 4}
Ambil akar kuadrat dari 0.
y=\frac{4}{2\times 4}
Kebalikan -4 adalah 4.
y=\frac{4}{8}
Kalikan 2 kali 4.
y=\frac{1}{2}
Kurangi pecahan \frac{4}{8} ke suku terendah dengan mengekstraksi dan membatalkan 4.
4y^{2}-4y+1=0
Gunakan properti distributif untuk mengalikan 4y dengan y-1.
4y^{2}-4y=-1
Kurangi 1 dari kedua sisi. Jika nol dikurangi bilangan tertentu, akan menghasilkan bilangan negatif dari bilangan tersebut.
\frac{4y^{2}-4y}{4}=-\frac{1}{4}
Bagi kedua sisi dengan 4.
y^{2}+\left(-\frac{4}{4}\right)y=-\frac{1}{4}
Membagi dengan 4 membatalkan perkalian dengan 4.
y^{2}-y=-\frac{1}{4}
Bagi -4 dengan 4.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Bagi -1, koefisien dari suku x, dengan 2 untuk mendapatkan -\frac{1}{2}. Lalu tambahkan kuadrat dari -\frac{1}{2} ke kedua sisi persamaan. Langkah ini membuat sisi kiri persamaan menjadi kuadrat yang sempurna.
y^{2}-y+\frac{1}{4}=\frac{-1+1}{4}
Kuadratkan -\frac{1}{2} dengan menguadratkan pembilang dan penyebut dari pecahan.
y^{2}-y+\frac{1}{4}=0
Tambahkan -\frac{1}{4} ke \frac{1}{4} dengan mencari faktor persekutuan dan menambahkan pembilang. Lalu kurangi pecahan ke suku terkecil jika memungkinkan.
\left(y-\frac{1}{2}\right)^{2}=0
Faktorkan y^{2}-y+\frac{1}{4}. Secara umum, ketika x^{2}+bx+c adalah kuadrat yang sempurna, itu selalu dapat difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{0}
Ambil akar kuadrat dari kedua sisi persamaan.
y-\frac{1}{2}=0 y-\frac{1}{2}=0
Sederhanakan.
y=\frac{1}{2} y=\frac{1}{2}
Tambahkan \frac{1}{2} ke kedua sisi persamaan.
y=\frac{1}{2}
Persamaan kini terselesaikan. Solusinya sama.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}