Lewati ke konten utama
Cari nilai x
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

a+b=-4 ab=4\times 1=4
Untuk menyelesaikan persamaan, faktor sisi kiri dengan pengelompokan. Pertama, sisi kiri harus ditulis ulang sebagai 4x^{2}+ax+bx+1. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,-4 -2,-2
Karena ab positif, a dan b memiliki tanda sama. Karena a+b negatif, a dan b keduanya negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk 4.
-1-4=-5 -2-2=-4
Hitung jumlah untuk setiap pasangan.
a=-2 b=-2
Penyelesaiannya adalah pasangan yang memberikan jumlah -4.
\left(4x^{2}-2x\right)+\left(-2x+1\right)
Tulis ulang 4x^{2}-4x+1 sebagai \left(4x^{2}-2x\right)+\left(-2x+1\right).
2x\left(2x-1\right)-\left(2x-1\right)
Faktor 2x di pertama dan -1 dalam grup kedua.
\left(2x-1\right)\left(2x-1\right)
Factor istilah umum 2x-1 dengan menggunakan properti distributif.
\left(2x-1\right)^{2}
Tulis ulang sebagai kuadrat binominal.
x=\frac{1}{2}
Untuk menemukan penyelesaian persamaan, selesaikan 2x-1=0.
4x^{2}-4x+1=0
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 4 dengan a, -4 dengan b, dan 1 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
-4 kuadrat.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
Kalikan -4 kali 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
Tambahkan 16 sampai -16.
x=-\frac{-4}{2\times 4}
Ambil akar kuadrat dari 0.
x=\frac{4}{2\times 4}
Kebalikan -4 adalah 4.
x=\frac{4}{8}
Kalikan 2 kali 4.
x=\frac{1}{2}
Kurangi pecahan \frac{4}{8} ke suku terendah dengan mengekstraksi dan membatalkan 4.
4x^{2}-4x+1=0
Persamaan kuadrat seperti yang ini dapat diselesaikan dengan melengkapi kuadrat. Agar dapat melengkapi kuadratnya, persamaan harus dalam bentuk x^{2}+bx=c.
4x^{2}-4x+1-1=-1
Kurangi 1 dari kedua sisi persamaan.
4x^{2}-4x=-1
Mengurangi 1 dari bilangan itu sendiri menghasilkan 0.
\frac{4x^{2}-4x}{4}=-\frac{1}{4}
Bagi kedua sisi dengan 4.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{1}{4}
Membagi dengan 4 membatalkan perkalian dengan 4.
x^{2}-x=-\frac{1}{4}
Bagi -4 dengan 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Bagi -1, koefisien dari suku x, dengan 2 untuk mendapatkan -\frac{1}{2}. Lalu tambahkan kuadrat dari -\frac{1}{2} ke kedua sisi persamaan. Langkah ini membuat sisi kiri persamaan menjadi kuadrat yang sempurna.
x^{2}-x+\frac{1}{4}=\frac{-1+1}{4}
Kuadratkan -\frac{1}{2} dengan menguadratkan pembilang dan penyebut dari pecahan.
x^{2}-x+\frac{1}{4}=0
Tambahkan -\frac{1}{4} ke \frac{1}{4} dengan mencari faktor persekutuan dan menambahkan pembilang. Lalu kurangi pecahan ke suku terkecil jika memungkinkan.
\left(x-\frac{1}{2}\right)^{2}=0
Faktorkan x^{2}-x+\frac{1}{4}. Secara umum, ketika x^{2}+bx+c adalah kuadrat yang sempurna, itu selalu dapat difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{0}
Ambil akar kuadrat dari kedua sisi persamaan.
x-\frac{1}{2}=0 x-\frac{1}{2}=0
Sederhanakan.
x=\frac{1}{2} x=\frac{1}{2}
Tambahkan \frac{1}{2} ke kedua sisi persamaan.
x=\frac{1}{2}
Persamaan kini terselesaikan. Solusinya sama.