Evaluasi
\frac{63}{65536}=0,000961304
Faktor
\frac{3 ^ {2} \cdot 7}{2 ^ {16}} = 0,0009613037109375
Bagikan
Disalin ke clipboard
\frac{1}{2048}+\frac{1}{2^{12}}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Hitung 2 sampai pangkat 11 dan dapatkan 2048.
\frac{1}{2048}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Hitung 2 sampai pangkat 12 dan dapatkan 4096.
\frac{2}{4096}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Kelipatan persekutuan terkecil dari 2048 dan 4096 adalah 4096. Ubah \frac{1}{2048} dan \frac{1}{4096} menjadi pecahan dengan penyebut 4096.
\frac{2+1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Karena \frac{2}{4096} dan \frac{1}{4096} memiliki penyebut yang sama, tambahkan bilangan dengan menambahkan pembilangnya.
\frac{3}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tambahkan 2 dan 1 untuk mendapatkan 3.
\frac{3}{4096}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Hitung 2 sampai pangkat 13 dan dapatkan 8192.
\frac{6}{8192}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Kelipatan persekutuan terkecil dari 4096 dan 8192 adalah 8192. Ubah \frac{3}{4096} dan \frac{1}{8192} menjadi pecahan dengan penyebut 8192.
\frac{6+1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Karena \frac{6}{8192} dan \frac{1}{8192} memiliki penyebut yang sama, tambahkan bilangan dengan menambahkan pembilangnya.
\frac{7}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tambahkan 6 dan 1 untuk mendapatkan 7.
\frac{7}{8192}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Hitung 2 sampai pangkat 14 dan dapatkan 16384.
\frac{14}{16384}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Kelipatan persekutuan terkecil dari 8192 dan 16384 adalah 16384. Ubah \frac{7}{8192} dan \frac{1}{16384} menjadi pecahan dengan penyebut 16384.
\frac{14+1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Karena \frac{14}{16384} dan \frac{1}{16384} memiliki penyebut yang sama, tambahkan bilangan dengan menambahkan pembilangnya.
\frac{15}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Tambahkan 14 dan 1 untuk mendapatkan 15.
\frac{15}{16384}+\frac{1}{32768}+\frac{1}{2^{16}}
Hitung 2 sampai pangkat 15 dan dapatkan 32768.
\frac{30}{32768}+\frac{1}{32768}+\frac{1}{2^{16}}
Kelipatan persekutuan terkecil dari 16384 dan 32768 adalah 32768. Ubah \frac{15}{16384} dan \frac{1}{32768} menjadi pecahan dengan penyebut 32768.
\frac{30+1}{32768}+\frac{1}{2^{16}}
Karena \frac{30}{32768} dan \frac{1}{32768} memiliki penyebut yang sama, tambahkan bilangan dengan menambahkan pembilangnya.
\frac{31}{32768}+\frac{1}{2^{16}}
Tambahkan 30 dan 1 untuk mendapatkan 31.
\frac{31}{32768}+\frac{1}{65536}
Hitung 2 sampai pangkat 16 dan dapatkan 65536.
\frac{62}{65536}+\frac{1}{65536}
Kelipatan persekutuan terkecil dari 32768 dan 65536 adalah 65536. Ubah \frac{31}{32768} dan \frac{1}{65536} menjadi pecahan dengan penyebut 65536.
\frac{62+1}{65536}
Karena \frac{62}{65536} dan \frac{1}{65536} memiliki penyebut yang sama, tambahkan bilangan dengan menambahkan pembilangnya.
\frac{63}{65536}
Tambahkan 62 dan 1 untuk mendapatkan 63.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}