Lewati ke konten utama
Cari nilai x
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

x^{2}+8x+16=0
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(x+4\right)^{2}.
a+b=8 ab=16
Untuk menyelesaikan persamaan, faktor x^{2}+8x+16 menggunakan rumus x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
1,16 2,8 4,4
Karena ab positif, a dan b memiliki tanda sama. Karena a+b positif, a dan b keduanya positif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk 16.
1+16=17 2+8=10 4+4=8
Hitung jumlah untuk setiap pasangan.
a=4 b=4
Penyelesaiannya adalah pasangan yang memberikan jumlah 8.
\left(x+4\right)\left(x+4\right)
Tulis ulang ekspresi yang difaktorkan \left(x+a\right)\left(x+b\right) menggunakan nilai yang diperoleh.
\left(x+4\right)^{2}
Tulis ulang sebagai kuadrat binominal.
x=-4
Untuk menemukan penyelesaian persamaan, selesaikan x+4=0.
x^{2}+8x+16=0
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(x+4\right)^{2}.
a+b=8 ab=1\times 16=16
Untuk menyelesaikan persamaan, faktor sisi kiri dengan pengelompokan. Pertama, sisi kiri harus ditulis ulang sebagai x^{2}+ax+bx+16. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
1,16 2,8 4,4
Karena ab positif, a dan b memiliki tanda sama. Karena a+b positif, a dan b keduanya positif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk 16.
1+16=17 2+8=10 4+4=8
Hitung jumlah untuk setiap pasangan.
a=4 b=4
Penyelesaiannya adalah pasangan yang memberikan jumlah 8.
\left(x^{2}+4x\right)+\left(4x+16\right)
Tulis ulang x^{2}+8x+16 sebagai \left(x^{2}+4x\right)+\left(4x+16\right).
x\left(x+4\right)+4\left(x+4\right)
Faktor x di pertama dan 4 dalam grup kedua.
\left(x+4\right)\left(x+4\right)
Factor istilah umum x+4 dengan menggunakan properti distributif.
\left(x+4\right)^{2}
Tulis ulang sebagai kuadrat binominal.
x=-4
Untuk menemukan penyelesaian persamaan, selesaikan x+4=0.
x^{2}+8x+16=0
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(x+4\right)^{2}.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 1 dengan a, 8 dengan b, dan 16 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 16}}{2}
8 kuadrat.
x=\frac{-8±\sqrt{64-64}}{2}
Kalikan -4 kali 16.
x=\frac{-8±\sqrt{0}}{2}
Tambahkan 64 sampai -64.
x=-\frac{8}{2}
Ambil akar kuadrat dari 0.
x=-4
Bagi -8 dengan 2.
\sqrt{\left(x+4\right)^{2}}=\sqrt{0}
Ambil akar kuadrat dari kedua sisi persamaan.
x+4=0 x+4=0
Sederhanakan.
x=-4 x=-4
Kurangi 4 dari kedua sisi persamaan.
x=-4
Persamaan kini terselesaikan. Solusinya sama.