Lewati ke konten utama
Cari nilai x
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

x^{2}+4x+4=36
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(x+2\right)^{2}.
x^{2}+4x+4-36=0
Kurangi 36 dari kedua sisi.
x^{2}+4x-32=0
Kurangi 36 dari 4 untuk mendapatkan -32.
a+b=4 ab=-32
Untuk menyelesaikan persamaan, faktor x^{2}+4x-32 menggunakan rumus x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,32 -2,16 -4,8
Karena ab negatif, a dan b memiliki tanda berlawanan. Karena a+b positif, angka positif memiliki nilai absolut yang lebih besar dari negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk -32.
-1+32=31 -2+16=14 -4+8=4
Hitung jumlah untuk setiap pasangan.
a=-4 b=8
Penyelesaiannya adalah pasangan yang memberikan jumlah 4.
\left(x-4\right)\left(x+8\right)
Tulis ulang ekspresi yang difaktorkan \left(x+a\right)\left(x+b\right) menggunakan nilai yang diperoleh.
x=4 x=-8
Untuk menemukan solusi persamaan, selesaikan x-4=0 dan x+8=0.
x^{2}+4x+4=36
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(x+2\right)^{2}.
x^{2}+4x+4-36=0
Kurangi 36 dari kedua sisi.
x^{2}+4x-32=0
Kurangi 36 dari 4 untuk mendapatkan -32.
a+b=4 ab=1\left(-32\right)=-32
Untuk menyelesaikan persamaan, faktor sisi kiri dengan pengelompokan. Pertama, sisi kiri harus ditulis ulang sebagai x^{2}+ax+bx-32. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,32 -2,16 -4,8
Karena ab negatif, a dan b memiliki tanda berlawanan. Karena a+b positif, angka positif memiliki nilai absolut yang lebih besar dari negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk -32.
-1+32=31 -2+16=14 -4+8=4
Hitung jumlah untuk setiap pasangan.
a=-4 b=8
Penyelesaiannya adalah pasangan yang memberikan jumlah 4.
\left(x^{2}-4x\right)+\left(8x-32\right)
Tulis ulang x^{2}+4x-32 sebagai \left(x^{2}-4x\right)+\left(8x-32\right).
x\left(x-4\right)+8\left(x-4\right)
Faktor x di pertama dan 8 dalam grup kedua.
\left(x-4\right)\left(x+8\right)
Factor istilah umum x-4 dengan menggunakan properti distributif.
x=4 x=-8
Untuk menemukan solusi persamaan, selesaikan x-4=0 dan x+8=0.
x^{2}+4x+4=36
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(x+2\right)^{2}.
x^{2}+4x+4-36=0
Kurangi 36 dari kedua sisi.
x^{2}+4x-32=0
Kurangi 36 dari 4 untuk mendapatkan -32.
x=\frac{-4±\sqrt{4^{2}-4\left(-32\right)}}{2}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 1 dengan a, 4 dengan b, dan -32 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-32\right)}}{2}
4 kuadrat.
x=\frac{-4±\sqrt{16+128}}{2}
Kalikan -4 kali -32.
x=\frac{-4±\sqrt{144}}{2}
Tambahkan 16 sampai 128.
x=\frac{-4±12}{2}
Ambil akar kuadrat dari 144.
x=\frac{8}{2}
Sekarang selesaikan persamaan x=\frac{-4±12}{2} jika ± adalah plus. Tambahkan -4 sampai 12.
x=4
Bagi 8 dengan 2.
x=-\frac{16}{2}
Sekarang selesaikan persamaan x=\frac{-4±12}{2} jika ± adalah minus. Kurangi 12 dari -4.
x=-8
Bagi -16 dengan 2.
x=4 x=-8
Persamaan kini terselesaikan.
\sqrt{\left(x+2\right)^{2}}=\sqrt{36}
Ambil akar kuadrat dari kedua sisi persamaan.
x+2=6 x+2=-6
Sederhanakan.
x=4 x=-8
Kurangi 2 dari kedua sisi persamaan.