Evaluasi
\frac{rt}{3}
Luaskan
\frac{rt}{3}
Bagikan
Disalin ke clipboard
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\frac{1}{4}r-s+\frac{2}{3}t kuadrat.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(r+\frac{1}{4}s\right)^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Untuk menemukan kebalikan dari r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}, temukan kebalikan setiap suku.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan \frac{1}{16}r^{2} dan -r^{2} untuk mendapatkan -\frac{15}{16}r^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan -\frac{1}{2}rs dan -\frac{1}{2}rs untuk mendapatkan -rs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan s^{2} dan -\frac{1}{16}s^{2} untuk mendapatkan \frac{15}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gunakan teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} untuk menjabarkan \left(s-\frac{2}{3}t\right)^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Untuk menemukan kebalikan dari s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}, temukan kebalikan setiap suku.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan \frac{15}{16}s^{2} dan -s^{2} untuk mendapatkan -\frac{1}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan -\frac{4}{3}st dan \frac{4}{3}st untuk mendapatkan 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan \frac{4}{9}t^{2} dan -\frac{4}{9}t^{2} untuk mendapatkan 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
Gunakan properti distributif untuk mengalikan \frac{1}{16} dengan r+s.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
Gunakan properti distributif untuk mengalikan \frac{1}{16}r+\frac{1}{16}s dengan 15r+s dan menggabungkan suku yang sama.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
Gabungkan -\frac{15}{16}r^{2} dan \frac{15}{16}r^{2} untuk mendapatkan 0.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
Gabungkan -rs dan rs untuk mendapatkan 0.
\frac{1}{3}rt
Gabungkan -\frac{1}{16}s^{2} dan \frac{1}{16}s^{2} untuk mendapatkan 0.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r+\frac{1}{4}s\right)^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
\frac{1}{4}r-s+\frac{2}{3}t kuadrat.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}\right)-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gunakan teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} untuk menjabarkan \left(r+\frac{1}{4}s\right)^{2}.
\frac{1}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-r^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Untuk menemukan kebalikan dari r^{2}+\frac{1}{2}rs+\frac{1}{16}s^{2}, temukan kebalikan setiap suku.
-\frac{15}{16}r^{2}-\frac{1}{2}rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{2}rs-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan \frac{1}{16}r^{2} dan -r^{2} untuk mendapatkan -\frac{15}{16}r^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\frac{1}{16}s^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan -\frac{1}{2}rs dan -\frac{1}{2}rs untuk mendapatkan -rs.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s-\frac{2}{3}t\right)^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan s^{2} dan -\frac{1}{16}s^{2} untuk mendapatkan \frac{15}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-\left(s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}\right)+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gunakan teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} untuk menjabarkan \left(s-\frac{2}{3}t\right)^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt+\frac{15}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}-s^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Untuk menemukan kebalikan dari s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}, temukan kebalikan setiap suku.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}-\frac{4}{3}st+\frac{4}{9}t^{2}+\frac{4}{3}st-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan \frac{15}{16}s^{2} dan -s^{2} untuk mendapatkan -\frac{1}{16}s^{2}.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{4}{9}t^{2}-\frac{4}{9}t^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan -\frac{4}{3}st dan \frac{4}{3}st untuk mendapatkan 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}\left(r+s\right)\left(15r+s\right)
Gabungkan \frac{4}{9}t^{2} dan -\frac{4}{9}t^{2} untuk mendapatkan 0.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\left(\frac{1}{16}r+\frac{1}{16}s\right)\left(15r+s\right)
Gunakan properti distributif untuk mengalikan \frac{1}{16} dengan r+s.
-\frac{15}{16}r^{2}-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{15}{16}r^{2}+rs+\frac{1}{16}s^{2}
Gunakan properti distributif untuk mengalikan \frac{1}{16}r+\frac{1}{16}s dengan 15r+s dan menggabungkan suku yang sama.
-rs+\frac{1}{3}rt-\frac{1}{16}s^{2}+rs+\frac{1}{16}s^{2}
Gabungkan -\frac{15}{16}r^{2} dan \frac{15}{16}r^{2} untuk mendapatkan 0.
\frac{1}{3}rt-\frac{1}{16}s^{2}+\frac{1}{16}s^{2}
Gabungkan -rs dan rs untuk mendapatkan 0.
\frac{1}{3}rt
Gabungkan -\frac{1}{16}s^{2} dan \frac{1}{16}s^{2} untuk mendapatkan 0.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}