Lewati ke konten utama
Cari nilai x
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

x^{2}-x-6=0
Kurangi 6 dari kedua sisi.
a+b=-1 ab=-6
Untuk menyelesaikan persamaan, faktor x^{2}-x-6 menggunakan rumus x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
1,-6 2,-3
Karena ab negatif, a dan b memiliki tanda berlawanan. Karena a+b negatif, angka negatif memiliki nilai absolut yang lebih besar dari positif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk -6.
1-6=-5 2-3=-1
Hitung jumlah untuk setiap pasangan.
a=-3 b=2
Penyelesaiannya adalah pasangan yang memberikan jumlah -1.
\left(x-3\right)\left(x+2\right)
Tulis ulang ekspresi yang difaktorkan \left(x+a\right)\left(x+b\right) menggunakan nilai yang diperoleh.
x=3 x=-2
Untuk menemukan solusi persamaan, selesaikan x-3=0 dan x+2=0.
x^{2}-x-6=0
Kurangi 6 dari kedua sisi.
a+b=-1 ab=1\left(-6\right)=-6
Untuk menyelesaikan persamaan, faktor sisi kiri dengan pengelompokan. Pertama, sisi kiri harus ditulis ulang sebagai x^{2}+ax+bx-6. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
1,-6 2,-3
Karena ab negatif, a dan b memiliki tanda berlawanan. Karena a+b negatif, angka negatif memiliki nilai absolut yang lebih besar dari positif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk -6.
1-6=-5 2-3=-1
Hitung jumlah untuk setiap pasangan.
a=-3 b=2
Penyelesaiannya adalah pasangan yang memberikan jumlah -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Tulis ulang x^{2}-x-6 sebagai \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Faktor x di pertama dan 2 dalam grup kedua.
\left(x-3\right)\left(x+2\right)
Factor istilah umum x-3 dengan menggunakan properti distributif.
x=3 x=-2
Untuk menemukan solusi persamaan, selesaikan x-3=0 dan x+2=0.
x^{2}-x=6
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
x^{2}-x-6=6-6
Kurangi 6 dari kedua sisi persamaan.
x^{2}-x-6=0
Mengurangi 6 dari bilangan itu sendiri menghasilkan 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 1 dengan a, -1 dengan b, dan -6 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Kalikan -4 kali -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Tambahkan 1 sampai 24.
x=\frac{-\left(-1\right)±5}{2}
Ambil akar kuadrat dari 25.
x=\frac{1±5}{2}
Kebalikan -1 adalah 1.
x=\frac{6}{2}
Sekarang selesaikan persamaan x=\frac{1±5}{2} jika ± adalah plus. Tambahkan 1 sampai 5.
x=3
Bagi 6 dengan 2.
x=-\frac{4}{2}
Sekarang selesaikan persamaan x=\frac{1±5}{2} jika ± adalah minus. Kurangi 5 dari 1.
x=-2
Bagi -4 dengan 2.
x=3 x=-2
Persamaan kini terselesaikan.
x^{2}-x=6
Persamaan kuadrat seperti yang ini dapat diselesaikan dengan melengkapi kuadrat. Agar dapat melengkapi kuadratnya, persamaan harus dalam bentuk x^{2}+bx=c.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Bagi -1, koefisien dari suku x, dengan 2 untuk mendapatkan -\frac{1}{2}. Lalu tambahkan kuadrat dari -\frac{1}{2} ke kedua sisi persamaan. Langkah ini membuat sisi kiri persamaan menjadi kuadrat yang sempurna.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Kuadratkan -\frac{1}{2} dengan menguadratkan pembilang dan penyebut dari pecahan.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Tambahkan 6 sampai \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Faktorkan x^{2}-x+\frac{1}{4}. Secara umum, ketika x^{2}+bx+c adalah kuadrat yang sempurna, itu selalu dapat difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Ambil akar kuadrat dari kedua sisi persamaan.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Sederhanakan.
x=3 x=-2
Tambahkan \frac{1}{2} ke kedua sisi persamaan.