Lewati ke konten utama
Cari nilai x
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

x^{2}-25x+5=0
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 5}}{2}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 1 dengan a, -25 dengan b, dan 5 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 5}}{2}
-25 kuadrat.
x=\frac{-\left(-25\right)±\sqrt{625-20}}{2}
Kalikan -4 kali 5.
x=\frac{-\left(-25\right)±\sqrt{605}}{2}
Tambahkan 625 sampai -20.
x=\frac{-\left(-25\right)±11\sqrt{5}}{2}
Ambil akar kuadrat dari 605.
x=\frac{25±11\sqrt{5}}{2}
Kebalikan -25 adalah 25.
x=\frac{11\sqrt{5}+25}{2}
Sekarang selesaikan persamaan x=\frac{25±11\sqrt{5}}{2} jika ± adalah plus. Tambahkan 25 sampai 11\sqrt{5}.
x=\frac{25-11\sqrt{5}}{2}
Sekarang selesaikan persamaan x=\frac{25±11\sqrt{5}}{2} jika ± adalah minus. Kurangi 11\sqrt{5} dari 25.
x=\frac{11\sqrt{5}+25}{2} x=\frac{25-11\sqrt{5}}{2}
Persamaan kini terselesaikan.
x^{2}-25x+5=0
Persamaan kuadrat seperti yang ini dapat diselesaikan dengan melengkapi kuadrat. Agar dapat melengkapi kuadratnya, persamaan harus dalam bentuk x^{2}+bx=c.
x^{2}-25x+5-5=-5
Kurangi 5 dari kedua sisi persamaan.
x^{2}-25x=-5
Mengurangi 5 dari bilangan itu sendiri menghasilkan 0.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-5+\left(-\frac{25}{2}\right)^{2}
Bagi -25, koefisien dari suku x, dengan 2 untuk mendapatkan -\frac{25}{2}. Lalu tambahkan kuadrat dari -\frac{25}{2} ke kedua sisi persamaan. Langkah ini membuat sisi kiri persamaan menjadi kuadrat yang sempurna.
x^{2}-25x+\frac{625}{4}=-5+\frac{625}{4}
Kuadratkan -\frac{25}{2} dengan menguadratkan pembilang dan penyebut dari pecahan.
x^{2}-25x+\frac{625}{4}=\frac{605}{4}
Tambahkan -5 sampai \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{605}{4}
Faktorkan x^{2}-25x+\frac{625}{4}. Secara umum, ketika x^{2}+bx+c adalah kuadrat yang sempurna, itu selalu dapat difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{605}{4}}
Ambil akar kuadrat dari kedua sisi persamaan.
x-\frac{25}{2}=\frac{11\sqrt{5}}{2} x-\frac{25}{2}=-\frac{11\sqrt{5}}{2}
Sederhanakan.
x=\frac{11\sqrt{5}+25}{2} x=\frac{25-11\sqrt{5}}{2}
Tambahkan \frac{25}{2} ke kedua sisi persamaan.