Lewati ke konten utama
Faktor
Tick mark Image
Evaluasi
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

a+b=8 ab=1\times 7=7
Factor ekspresi dengan pengelompokan. Pertama, ekspresi harus ditulis ulang sebagai x^{2}+ax+bx+7. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
a=1 b=7
Karena ab positif, a dan b memiliki tanda sama. Karena a+b positif, a dan b keduanya positif. Satu-satunya pasangan adalah solusi sistem.
\left(x^{2}+x\right)+\left(7x+7\right)
Tulis ulang x^{2}+8x+7 sebagai \left(x^{2}+x\right)+\left(7x+7\right).
x\left(x+1\right)+7\left(x+1\right)
Faktor x di pertama dan 7 dalam grup kedua.
\left(x+1\right)\left(x+7\right)
Factor istilah umum x+1 dengan menggunakan properti distributif.
x^{2}+8x+7=0
Polinomial pangkat dua dapat difaktorkan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dengan x_{1} dan x_{2} adalah solusi persamaan kuadrat ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 7}}{2}
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
x=\frac{-8±\sqrt{64-4\times 7}}{2}
8 kuadrat.
x=\frac{-8±\sqrt{64-28}}{2}
Kalikan -4 kali 7.
x=\frac{-8±\sqrt{36}}{2}
Tambahkan 64 sampai -28.
x=\frac{-8±6}{2}
Ambil akar kuadrat dari 36.
x=-\frac{2}{2}
Sekarang selesaikan persamaan x=\frac{-8±6}{2} jika ± adalah plus. Tambahkan -8 sampai 6.
x=-1
Bagi -2 dengan 2.
x=-\frac{14}{2}
Sekarang selesaikan persamaan x=\frac{-8±6}{2} jika ± adalah minus. Kurangi 6 dari -8.
x=-7
Bagi -14 dengan 2.
x^{2}+8x+7=\left(x-\left(-1\right)\right)\left(x-\left(-7\right)\right)
Faktorkan ekspresi asli menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ganti -1 untuk x_{1} dan -7 untuk x_{2}.
x^{2}+8x+7=\left(x+1\right)\left(x+7\right)
Sederhanakan semua ekspresi dari bentuk p-\left(-q\right) menjadi p+q.