Lewati ke konten utama
Faktor
Tick mark Image
Evaluasi
Tick mark Image
Grafik

Soal yang Mirip dari Pencarian Web

Bagikan

a+b=5 ab=1\left(-6\right)=-6
Faktorkan ekspresi dengan mengelompokkan. Pertama, ekspresi harus ditulis ulang sebagai x^{2}+ax+bx-6. Untuk menemukan a dan b, siapkan sistem yang akan diselesaikan.
-1,6 -2,3
Karena ab negatif, a dan b memiliki tanda yang berlawanan. Karena a+b positif, angka positif memiliki nilai absolut yang lebih besar daripada yang negatif. Cantumkan semua pasangan bilangan bulat tersebut yang memberikan -6 produk.
-1+6=5 -2+3=1
Hitung jumlah untuk setiap pasangan.
a=-1 b=6
Penyelesaiannya adalah pasangan yang memberikan jumlah 5.
\left(x^{2}-x\right)+\left(6x-6\right)
Tulis ulang x^{2}+5x-6 sebagai \left(x^{2}-x\right)+\left(6x-6\right).
x\left(x-1\right)+6\left(x-1\right)
Faktor keluar x di pertama dan 6 dalam grup kedua.
\left(x-1\right)\left(x+6\right)
Faktorkan keluar x-1 suku yang sama dengan menggunakan properti distributif.
x^{2}+5x-6=0
Polinomial pangkat dua dapat difaktorkan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dengan x_{1} dan x_{2} adalah solusi persamaan kuadrat ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
5 kuadrat.
x=\frac{-5±\sqrt{25+24}}{2}
Kalikan -4 kali -6.
x=\frac{-5±\sqrt{49}}{2}
Tambahkan 25 sampai 24.
x=\frac{-5±7}{2}
Ambil akar kuadrat dari 49.
x=\frac{2}{2}
Sekarang selesaikan persamaan x=\frac{-5±7}{2} jika ± adalah plus. Tambahkan -5 sampai 7.
x=1
Bagi 2 dengan 2.
x=-\frac{12}{2}
Sekarang selesaikan persamaan x=\frac{-5±7}{2} jika ± adalah minus. Kurangi 7 dari -5.
x=-6
Bagi -12 dengan 2.
x^{2}+5x-6=\left(x-1\right)\left(x-\left(-6\right)\right)
Faktorkan ekspresi asli menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ganti 1 untuk x_{1} dan -6 untuk x_{2}.
x^{2}+5x-6=\left(x-1\right)\left(x+6\right)
Sederhanakan semua ekspresi dari bentuk p-\left(-q\right) menjadi p+q.