Evaluasi
\frac{6585}{4}=1646,25
Bagikan
Disalin ke clipboard
\int x^{3}+2x+1\mathrm{d}x
Evaluasi integral tak tentu terlebih dahulu.
\int x^{3}\mathrm{d}x+\int 2x\mathrm{d}x+\int 1\mathrm{d}x
Integrasikan jumlah suku demi suku.
\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x+\int 1\mathrm{d}x
Faktorkan konstanta pada setiap suku.
\frac{x^{4}}{4}+2\int x\mathrm{d}x+\int 1\mathrm{d}x
Karena \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} untuk k\neq -1, ganti \int x^{3}\mathrm{d}x dengan \frac{x^{4}}{4}.
\frac{x^{4}}{4}+x^{2}+\int 1\mathrm{d}x
Karena \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} untuk k\neq -1, ganti \int x\mathrm{d}x dengan \frac{x^{2}}{2}. Kalikan 2 kali \frac{x^{2}}{2}.
\frac{x^{4}}{4}+x^{2}+x
Temukan integral 1 menggunakan tabel aturan integral umum \int a\mathrm{d}x=ax.
\frac{9^{4}}{4}+9^{2}+9-\left(\frac{4^{4}}{4}+4^{2}+4\right)
Bilangan integral tertentu adalah antiderivatif dari ekspresi yang dievaluasi pada batasan atas dari integrasi dikurangi antiderivatif yang dievaluasi pada batasan bawah dari integrasi.
\frac{6585}{4}
Sederhanakan.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}