Evaluasi
\cos(x)
Diferensial w.r.t. x
-\sin(x)
Bagikan
Disalin ke clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0\pi ))
Kalikan 0 dan 25 untuk mendapatkan 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0))
Bilangan apa pun yang dikalikan nol, menghasilkan nol.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
Bilangan apa pun yang ditambahkan nol, menghasilkan bilangan itu sendiri.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
Untuk fungsi f\left(x\right), turunan merupakan batasan dari \frac{f\left(x+h\right)-f\left(x\right)}{h} saat h masuk ke 0, jika batasan tersebut ada.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
Gunakan Rumus Jumlah untuk Sinus.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
Faktor dari \sin(x).
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Tulis ulang batasannya.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Gunakan fakta yang menyatakan bahwa x adalah suatu konstanta ketika menghitung batas saat h menuju ke 0.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
Batas dari \lim_{x\to 0}\frac{\sin(x)}{x} adalah 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Untuk mengevaluasi batas \lim_{h\to 0}\frac{\cos(h)-1}{h}, terlebih dahulu kalikan pembilang dan penyebut dengan \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Kalikan \cos(h)+1 kali \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Gunakan Identitas Phytagoras.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Tulis ulang batasannya.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Batas dari \lim_{x\to 0}\frac{\sin(x)}{x} adalah 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Gunakan fakta yang \frac{\sin(h)}{\cos(h)+1} berkelanjutan pada 0.
\cos(x)
Ganti nilai 0 ke dalam ekspresi \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}