Cari nilai x
x=4
x=8
Grafik
Bagikan
Disalin ke clipboard
xx+4\times 8=12x
Variabel x tidak boleh sama dengan 0 karena pembagian dengan nol tidak terdefinisi. Kalikan kedua sisi persamaan dengan 4x, kelipatan perkalian terkecil dari 4,x.
x^{2}+4\times 8=12x
Kalikan x dan x untuk mendapatkan x^{2}.
x^{2}+32=12x
Kalikan 4 dan 8 untuk mendapatkan 32.
x^{2}+32-12x=0
Kurangi 12x dari kedua sisi.
x^{2}-12x+32=0
Susun ulang polinomial untuk memasukkannya ke dalam bentuk standar. Letakkan suku sesuai urutan dari pangkat terbesar ke terkecil.
a+b=-12 ab=32
Untuk menyelesaikan persamaan, faktor x^{2}-12x+32 menggunakan rumus x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,-32 -2,-16 -4,-8
Karena ab positif, a dan b memiliki tanda sama. Karena a+b negatif, a dan b keduanya negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk 32.
-1-32=-33 -2-16=-18 -4-8=-12
Hitung jumlah untuk setiap pasangan.
a=-8 b=-4
Penyelesaiannya adalah pasangan yang memberikan jumlah -12.
\left(x-8\right)\left(x-4\right)
Tulis ulang ekspresi yang difaktorkan \left(x+a\right)\left(x+b\right) menggunakan nilai yang diperoleh.
x=8 x=4
Untuk menemukan solusi persamaan, selesaikan x-8=0 dan x-4=0.
xx+4\times 8=12x
Variabel x tidak boleh sama dengan 0 karena pembagian dengan nol tidak terdefinisi. Kalikan kedua sisi persamaan dengan 4x, kelipatan perkalian terkecil dari 4,x.
x^{2}+4\times 8=12x
Kalikan x dan x untuk mendapatkan x^{2}.
x^{2}+32=12x
Kalikan 4 dan 8 untuk mendapatkan 32.
x^{2}+32-12x=0
Kurangi 12x dari kedua sisi.
x^{2}-12x+32=0
Susun ulang polinomial untuk memasukkannya ke dalam bentuk standar. Letakkan suku sesuai urutan dari pangkat terbesar ke terkecil.
a+b=-12 ab=1\times 32=32
Untuk menyelesaikan persamaan, faktor sisi kiri dengan pengelompokan. Pertama, sisi kiri harus ditulis ulang sebagai x^{2}+ax+bx+32. Untuk menemukan a dan b, siapkan sistem yang akan diatasi.
-1,-32 -2,-16 -4,-8
Karena ab positif, a dan b memiliki tanda sama. Karena a+b negatif, a dan b keduanya negatif. Cantumkan semua pasangan bilangan bulat seperti yang memberikan produk 32.
-1-32=-33 -2-16=-18 -4-8=-12
Hitung jumlah untuk setiap pasangan.
a=-8 b=-4
Penyelesaiannya adalah pasangan yang memberikan jumlah -12.
\left(x^{2}-8x\right)+\left(-4x+32\right)
Tulis ulang x^{2}-12x+32 sebagai \left(x^{2}-8x\right)+\left(-4x+32\right).
x\left(x-8\right)-4\left(x-8\right)
Faktor x di pertama dan -4 dalam grup kedua.
\left(x-8\right)\left(x-4\right)
Factor istilah umum x-8 dengan menggunakan properti distributif.
x=8 x=4
Untuk menemukan solusi persamaan, selesaikan x-8=0 dan x-4=0.
xx+4\times 8=12x
Variabel x tidak boleh sama dengan 0 karena pembagian dengan nol tidak terdefinisi. Kalikan kedua sisi persamaan dengan 4x, kelipatan perkalian terkecil dari 4,x.
x^{2}+4\times 8=12x
Kalikan x dan x untuk mendapatkan x^{2}.
x^{2}+32=12x
Kalikan 4 dan 8 untuk mendapatkan 32.
x^{2}+32-12x=0
Kurangi 12x dari kedua sisi.
x^{2}-12x+32=0
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 1 dengan a, -12 dengan b, dan 32 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
-12 kuadrat.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
Kalikan -4 kali 32.
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
Tambahkan 144 sampai -128.
x=\frac{-\left(-12\right)±4}{2}
Ambil akar kuadrat dari 16.
x=\frac{12±4}{2}
Kebalikan -12 adalah 12.
x=\frac{16}{2}
Sekarang selesaikan persamaan x=\frac{12±4}{2} jika ± adalah plus. Tambahkan 12 sampai 4.
x=8
Bagi 16 dengan 2.
x=\frac{8}{2}
Sekarang selesaikan persamaan x=\frac{12±4}{2} jika ± adalah minus. Kurangi 4 dari 12.
x=4
Bagi 8 dengan 2.
x=8 x=4
Persamaan kini terselesaikan.
xx+4\times 8=12x
Variabel x tidak boleh sama dengan 0 karena pembagian dengan nol tidak terdefinisi. Kalikan kedua sisi persamaan dengan 4x, kelipatan perkalian terkecil dari 4,x.
x^{2}+4\times 8=12x
Kalikan x dan x untuk mendapatkan x^{2}.
x^{2}+32=12x
Kalikan 4 dan 8 untuk mendapatkan 32.
x^{2}+32-12x=0
Kurangi 12x dari kedua sisi.
x^{2}-12x=-32
Kurangi 32 dari kedua sisi. Jika nol dikurangi bilangan tertentu, akan menghasilkan bilangan negatif dari bilangan tersebut.
x^{2}-12x+\left(-6\right)^{2}=-32+\left(-6\right)^{2}
Bagi -12, koefisien dari suku x, dengan 2 untuk mendapatkan -6. Lalu tambahkan kuadrat dari -6 ke kedua sisi persamaan. Langkah ini membuat sisi kiri persamaan menjadi kuadrat yang sempurna.
x^{2}-12x+36=-32+36
-6 kuadrat.
x^{2}-12x+36=4
Tambahkan -32 sampai 36.
\left(x-6\right)^{2}=4
Faktorkan x^{2}-12x+36. Secara umum, ketika x^{2}+bx+c adalah kuadrat yang sempurna, itu selalu dapat difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{4}
Ambil akar kuadrat dari kedua sisi persamaan.
x-6=2 x-6=-2
Sederhanakan.
x=8 x=4
Tambahkan 6 ke kedua sisi persamaan.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}