Cari nilai b
b=\sqrt{3}+1\approx 2,732050808
Bagikan
Disalin ke clipboard
\frac{2\times 2}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Bagi 2 dengan \frac{\sqrt{2}}{2} dengan mengalikan 2 sesuai dengan resiprokal dari \frac{\sqrt{2}}{2}.
\frac{4}{\sqrt{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Kalikan 2 dan 2 untuk mendapatkan 4.
\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Rasionalkan penyebut dari \frac{4}{\sqrt{2}} dengan mengalikan pembilang dan penyebut dengan \sqrt{2}.
\frac{4\sqrt{2}}{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Kuadrat \sqrt{2} adalah 2.
2\sqrt{2}=\frac{b}{\frac{\sqrt{2}+\sqrt{6}}{4}}
Bagi 4\sqrt{2} dengan 2 untuk mendapatkan 2\sqrt{2}.
2\sqrt{2}=\frac{b\times 4}{\sqrt{2}+\sqrt{6}}
Bagi b dengan \frac{\sqrt{2}+\sqrt{6}}{4} dengan mengalikan b sesuai dengan resiprokal dari \frac{\sqrt{2}+\sqrt{6}}{4}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rasionalkan penyebut dari \frac{b\times 4}{\sqrt{2}+\sqrt{6}} dengan mengalikan pembilang dan penyebut dengan \sqrt{2}-\sqrt{6}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Sederhanakan \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Perkalian dapat diubah menjadi bentuk selisih dua kuadrat menggunakan aturan: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
\sqrt{2} kuadrat. \sqrt{6} kuadrat.
2\sqrt{2}=\frac{b\times 4\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Kurangi 6 dari 2 untuk mendapatkan -4.
2\sqrt{2}=b\left(-1\right)\left(\sqrt{2}-\sqrt{6}\right)
Sederhanakan -4 dan -4.
2\sqrt{2}=-b\sqrt{2}+b\sqrt{6}
Gunakan properti distributif untuk mengalikan b\left(-1\right) dengan \sqrt{2}-\sqrt{6}.
-b\sqrt{2}+b\sqrt{6}=2\sqrt{2}
Tukarkan sisi sehingga semua suku variabel ada di sisi kiri.
\left(-\sqrt{2}+\sqrt{6}\right)b=2\sqrt{2}
Gabungkan semua suku yang berisi b.
\left(\sqrt{6}-\sqrt{2}\right)b=2\sqrt{2}
Persamaan berada dalam bentuk standar.
\frac{\left(\sqrt{6}-\sqrt{2}\right)b}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Bagi kedua sisi dengan -\sqrt{2}+\sqrt{6}.
b=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Membagi dengan -\sqrt{2}+\sqrt{6} membatalkan perkalian dengan -\sqrt{2}+\sqrt{6}.
b=\sqrt{3}+1
Bagi 2\sqrt{2} dengan -\sqrt{2}+\sqrt{6}.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}