Լուծել y-ի համար
y=\frac{1+3\sqrt{3}i}{2}\approx 0.5+2.598076211i
y=\frac{-3\sqrt{3}i+1}{2}\approx 0.5-2.598076211i
Կիսվեք
Պատճենահանված է clipboard
y^{2}-y+7=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
y=\frac{-\left(-1\right)±\sqrt{1-4\times 7}}{2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -1-ը b-ով և 7-ը c-ով:
y=\frac{-\left(-1\right)±\sqrt{1-28}}{2}
Բազմապատկեք -4 անգամ 7:
y=\frac{-\left(-1\right)±\sqrt{-27}}{2}
Գումարեք 1 -28-ին:
y=\frac{-\left(-1\right)±3\sqrt{3}i}{2}
Հանեք -27-ի քառակուսի արմատը:
y=\frac{1±3\sqrt{3}i}{2}
-1 թվի հակադրությունը 1 է:
y=\frac{1+3\sqrt{3}i}{2}
Այժմ լուծել y=\frac{1±3\sqrt{3}i}{2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 1 3i\sqrt{3}-ին:
y=\frac{-3\sqrt{3}i+1}{2}
Այժմ լուծել y=\frac{1±3\sqrt{3}i}{2} հավասարումը, երբ ±-ը մինուս է: Հանեք 3i\sqrt{3} 1-ից:
y=\frac{1+3\sqrt{3}i}{2} y=\frac{-3\sqrt{3}i+1}{2}
Հավասարումն այժմ լուծված է:
y^{2}-y+7=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
y^{2}-y+7-7=-7
Հանեք 7 հավասարման երկու կողմից:
y^{2}-y=-7
Հանելով 7 իրենից՝ մնում է 0:
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=-7+\left(-\frac{1}{2}\right)^{2}
Բաժանեք -1-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{1}{2}-ը: Ապա գումարեք -\frac{1}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
y^{2}-y+\frac{1}{4}=-7+\frac{1}{4}
Բարձրացրեք քառակուսի -\frac{1}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
y^{2}-y+\frac{1}{4}=-\frac{27}{4}
Գումարեք -7 \frac{1}{4}-ին:
\left(y-\frac{1}{2}\right)^{2}=-\frac{27}{4}
Գործոն y^{2}-y+\frac{1}{4}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{27}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
y-\frac{1}{2}=\frac{3\sqrt{3}i}{2} y-\frac{1}{2}=-\frac{3\sqrt{3}i}{2}
Պարզեցնել:
y=\frac{1+3\sqrt{3}i}{2} y=\frac{-3\sqrt{3}i+1}{2}
Գումարեք \frac{1}{2} հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}