Skip դեպի հիմնական բովանդակությունը
Լուծել y, x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

y-x=0
Դիտարկել առաջին հավասարումը: Հանեք x երկու կողմերից:
y-x=0,3y+7x=10
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
y-x=0
Ընտրեք հավասարումներից մեկը և լուծեք այն y-ի համար՝ առանձնացնելով y-ը հավասարության նշանի ձախ կողմում:
y=x
Գումարեք x հավասարման երկու կողմին:
3x+7x=10
Փոխարինեք x-ը y-ով մյուս հավասարման մեջ՝ 3y+7x=10:
10x=10
Գումարեք 3x 7x-ին:
x=1
Բաժանեք երկու կողմերը 10-ի:
y=1
Փոխարինեք 1-ը x-ով y=x-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=1,x=1
Այժմ համակարգը լուծվել է:
y-x=0
Դիտարկել առաջին հավասարումը: Հանեք x երկու կողմերից:
y-x=0,3y+7x=10
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&-1\\3&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\10\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}1&-1\\3&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&-1\\3&7\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-3\right)}&-\frac{-1}{7-\left(-3\right)}\\-\frac{3}{7-\left(-3\right)}&\frac{1}{7-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\10\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{10}&\frac{1}{10}\\-\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}0\\10\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 10\\\frac{1}{10}\times 10\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Կատարել թվաբանություն:
y=1,x=1
Արտահանեք մատրիցայի y և x տարրերը:
y-x=0
Դիտարկել առաջին հավասարումը: Հանեք x երկու կողմերից:
y-x=0,3y+7x=10
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3y+3\left(-1\right)x=0,3y+7x=10
y-ը և 3y-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 3-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
3y-3x=0,3y+7x=10
Պարզեցնել:
3y-3y-3x-7x=-10
Հանեք 3y+7x=10 3y-3x=0-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-3x-7x=-10
Գումարեք 3y -3y-ին: 3y-ը և -3y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-10x=-10
Գումարեք -3x -7x-ին:
x=1
Բաժանեք երկու կողմերը -10-ի:
3y+7=10
Փոխարինեք 1-ը x-ով 3y+7x=10-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
3y=3
Հանեք 7 հավասարման երկու կողմից:
y=1
Բաժանեք երկու կողմերը 3-ի:
y=1,x=1
Այժմ համակարգը լուծվել է: