Լուծել x-ի համար
x = \frac{\sqrt{401} + 21}{2} \approx 20.512492197
x=\frac{21-\sqrt{401}}{2}\approx 0.487507803
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x^{2}-8x+10-13x=0
Հանեք 13x երկու կողմերից:
x^{2}-21x+10=0
Համակցեք -8x և -13x և ստացեք -21x:
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 10}}{2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -21-ը b-ով և 10-ը c-ով:
x=\frac{-\left(-21\right)±\sqrt{441-4\times 10}}{2}
-21-ի քառակուսի:
x=\frac{-\left(-21\right)±\sqrt{441-40}}{2}
Բազմապատկեք -4 անգամ 10:
x=\frac{-\left(-21\right)±\sqrt{401}}{2}
Գումարեք 441 -40-ին:
x=\frac{21±\sqrt{401}}{2}
-21 թվի հակադրությունը 21 է:
x=\frac{\sqrt{401}+21}{2}
Այժմ լուծել x=\frac{21±\sqrt{401}}{2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 21 \sqrt{401}-ին:
x=\frac{21-\sqrt{401}}{2}
Այժմ լուծել x=\frac{21±\sqrt{401}}{2} հավասարումը, երբ ±-ը մինուս է: Հանեք \sqrt{401} 21-ից:
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
Հավասարումն այժմ լուծված է:
x^{2}-8x+10-13x=0
Հանեք 13x երկու կողմերից:
x^{2}-21x+10=0
Համակցեք -8x և -13x և ստացեք -21x:
x^{2}-21x=-10
Հանեք 10 երկու կողմերից: Զրոյից հանելով ցանկացած թիվ ստացվում է նույն թվի բացասական արժեքը:
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-10+\left(-\frac{21}{2}\right)^{2}
Բաժանեք -21-ը՝ x անդամի գործակիցը 2-ի և ստացեք -\frac{21}{2}-ը: Ապա գումարեք -\frac{21}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-21x+\frac{441}{4}=-10+\frac{441}{4}
Բարձրացրեք քառակուսի -\frac{21}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}-21x+\frac{441}{4}=\frac{401}{4}
Գումարեք -10 \frac{441}{4}-ին:
\left(x-\frac{21}{2}\right)^{2}=\frac{401}{4}
x^{2}-21x+\frac{441}{4} բազմապատիկ: Սովորաբար, երբ x^{2}+bx+c-ը լրիվ քառակուսի է, նրա բազմապատիկը միշտ կարելի է ստանալ հետևյալ ձևով՝ \left(x+\frac{b}{2}\right)^{2}:
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{401}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-\frac{21}{2}=\frac{\sqrt{401}}{2} x-\frac{21}{2}=-\frac{\sqrt{401}}{2}
Պարզեցնել:
x=\frac{\sqrt{401}+21}{2} x=\frac{21-\sqrt{401}}{2}
Գումարեք \frac{21}{2} հավասարման երկու կողմին:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}