Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x\left(x-28\right)=0
Բաժանեք x բազմապատիկի վրա:
x=0 x=28
Հավասարման լուծումները գտնելու համար լուծեք x=0-ն և x-28=0-ն։
x^{2}-28x=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}}}{2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, -28-ը b-ով և 0-ը c-ով:
x=\frac{-\left(-28\right)±28}{2}
Հանեք \left(-28\right)^{2}-ի քառակուսի արմատը:
x=\frac{28±28}{2}
-28 թվի հակադրությունը 28 է:
x=\frac{56}{2}
Այժմ լուծել x=\frac{28±28}{2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք 28 28-ին:
x=28
Բաժանեք 56-ը 2-ի վրա:
x=\frac{0}{2}
Այժմ լուծել x=\frac{28±28}{2} հավասարումը, երբ ±-ը մինուս է: Հանեք 28 28-ից:
x=0
Բաժանեք 0-ը 2-ի վրա:
x=28 x=0
Հավասարումն այժմ լուծված է:
x^{2}-28x=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
x^{2}-28x+\left(-14\right)^{2}=\left(-14\right)^{2}
Բաժանեք -28-ը՝ x անդամի գործակիցը 2-ի և ստացեք -14-ը: Ապա գումարեք -14-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}-28x+196=196
-14-ի քառակուսի:
\left(x-14\right)^{2}=196
x^{2}-28x+196 բազմապատիկ: Սովորաբար, երբ x^{2}+bx+c-ը լրիվ քառակուսի է, նրա բազմապատիկը միշտ կարելի է ստանալ հետևյալ ձևով՝ \left(x+\frac{b}{2}\right)^{2}:
\sqrt{\left(x-14\right)^{2}}=\sqrt{196}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x-14=14 x-14=-14
Պարզեցնել:
x=28 x=0
Գումարեք 14 հավասարման երկու կողմին: