Լուծել x-ի համար
x=-7
x=6
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
a+b=1 ab=-42
Հավասարումը լուծելու համար դուրս բերեք x^{2}+x-42-ը՝ օգտագործելով x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) բանաձևը։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
-1,42 -2,21 -3,14 -6,7
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն դրական է, դրական թիվը ավելի մեծ բացարձակ արժեք ունի, քան բացասականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -42 է։
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-6 b=7
Լուծումը այն զույգն է, որը տալիս է 1 գումար։
\left(x-6\right)\left(x+7\right)
Վերագրեք դուրս բերված \left(x+a\right)\left(x+b\right) արտահայտությունը՝ օգտագործելով ստացված արժեքները:
x=6 x=-7
Հավասարման լուծումները գտնելու համար լուծեք x-6=0-ն և x+7=0-ն։
a+b=1 ab=1\left(-42\right)=-42
Հավասարումը լուծելու համար դուրս բերեք ձախ հատվածը՝ խմբավորման միջոցով։ Նախ, ձախ հատվածը պետք է գրվի այսպես՝ x^{2}+ax+bx-42։ a-ը և b-ը գտնելու համար ստեղծեք լուծելու համակարգ։
-1,42 -2,21 -3,14 -6,7
Քանի որ ab-ն բացասական է, a-ն և b-ն հակառակ նշաններն ունեն։ Քանի որ a+b-ն դրական է, դրական թիվը ավելի մեծ բացարձակ արժեք ունի, քան բացասականը։ Թվարկեք բոլոր այն ամբողջ թվով զույգերը, որոնց արդյունքը -42 է։
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Հաշվարկեք յուրաքանչյուր զույգի գումարը։
a=-6 b=7
Լուծումը այն զույգն է, որը տալիս է 1 գումար։
\left(x^{2}-6x\right)+\left(7x-42\right)
Նորից գրեք x^{2}+x-42-ը \left(x^{2}-6x\right)+\left(7x-42\right)-ի տեսքով:
x\left(x-6\right)+7\left(x-6\right)
Դուրս բերել x-ը առաջին իսկ 7-ը՝ երկրորդ խմբում։
\left(x-6\right)\left(x+7\right)
Ֆակտորացրեք x-6 սովորական անդամը՝ օգտագործելով բաժանիչ հատկություն:
x=6 x=-7
Հավասարման լուծումները գտնելու համար լուծեք x-6=0-ն և x+7=0-ն։
x^{2}+x-42=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-1±\sqrt{1^{2}-4\left(-42\right)}}{2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 1-ը b-ով և -42-ը c-ով:
x=\frac{-1±\sqrt{1-4\left(-42\right)}}{2}
1-ի քառակուսի:
x=\frac{-1±\sqrt{1+168}}{2}
Բազմապատկեք -4 անգամ -42:
x=\frac{-1±\sqrt{169}}{2}
Գումարեք 1 168-ին:
x=\frac{-1±13}{2}
Հանեք 169-ի քառակուսի արմատը:
x=\frac{12}{2}
Այժմ լուծել x=\frac{-1±13}{2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -1 13-ին:
x=6
Բաժանեք 12-ը 2-ի վրա:
x=-\frac{14}{2}
Այժմ լուծել x=\frac{-1±13}{2} հավասարումը, երբ ±-ը մինուս է: Հանեք 13 -1-ից:
x=-7
Բաժանեք -14-ը 2-ի վրա:
x=6 x=-7
Հավասարումն այժմ լուծված է:
x^{2}+x-42=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
x^{2}+x-42-\left(-42\right)=-\left(-42\right)
Գումարեք 42 հավասարման երկու կողմին:
x^{2}+x=-\left(-42\right)
Հանելով -42 իրենից՝ մնում է 0:
x^{2}+x=42
Հանեք -42 0-ից:
x^{2}+x+\left(\frac{1}{2}\right)^{2}=42+\left(\frac{1}{2}\right)^{2}
Բաժանեք 1-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{1}{2}-ը: Ապա գումարեք \frac{1}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+x+\frac{1}{4}=42+\frac{1}{4}
Բարձրացրեք քառակուսի \frac{1}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+x+\frac{1}{4}=\frac{169}{4}
Գումարեք 42 \frac{1}{4}-ին:
\left(x+\frac{1}{2}\right)^{2}=\frac{169}{4}
Գործոն x^{2}+x+\frac{1}{4}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{1}{2}=\frac{13}{2} x+\frac{1}{2}=-\frac{13}{2}
Պարզեցնել:
x=6 x=-7
Հանեք \frac{1}{2} հավասարման երկու կողմից:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}